Операторы и выражения в python

Представление своих классов

Определяет поведение функции , вызванной для экземпляра вашего класса.

Определяет поведение функции , вызыванной для экземпляра вашего класса. Главное отличие от в целевой аудитории. больше предназначен для машинно-ориентированного вывода (более того, это часто должен быть валидный код на Питоне), а предназначен для чтения людьми.

Определяет поведение функции , вызыванной для экземпляра вашего класса. похож на , но возвращает строку в юникоде. Будте осторожны: если клиент вызывает на экземпляре вашего класса, а вы определили только , то это не будет работать. Постарайтесь всегда определять для случая, когда кто-то не имеет такой роскоши как юникод.

Определяет поведение, когда экземпляр вашего класса используется в форматировании строк нового стиля. Например, приведёт к вызову . Это может быть полезно для определения ваших собственных числовых или строковых типов, которым вы можете захотеть предоставить какие-нибудь специальные опции форматирования.

Определяет поведение функции , вызыванной для экземпляра вашего класса. Метод должен возвращать целочисленное значение, которое будет использоваться для быстрого сравнения ключей в словарях. Заметьте, что в таком случае обычно нужно определять и тоже. Руководствуйтесь следующим правилом: подразумевает .

Определяет поведение функции , вызванной для экземпляра вашего класса. Должна вернуть True или False, в зависимости от того, когда вы считаете экземпляр соответствующим True или False.

Определяет поведение функции , вызванной на экземпляре вашего класса. Этот метод должен возвращать пользователю список атрибутов

Обычно, определение не требуется, но может быть жизненно важно для интерактивного использования вашего класса, если вы переопределили или (с которыми вы встретитесь в следующей части), или каким-либо другим образом динамически создаёте атрибуты.

Определяет поведение функции , вызыванной на экземпляре вашего класса. Метод должен вернуть размер вашего объекта в байтах

Он главным образом полезен для классов, определённых в расширениях на C, но всё-равно полезно о нём знать.

Операции над числами

Манипуляции над числовыми значениями в языке программирования Python выполняются благодаря множеству различных операций, символьные обозначения которых, как правило, совпадают с аналогами из традиционной математики. Таким образом, можно прибавлять, отнимать, умножать, делить, находить остаток от деления и возводить в степень числовые значения любых разновидностей. Ознакомиться с основными типами операций, которые выполняются над цифровыми значениями, можно из следующей небольшой таблицы:

Операция Назначение
a + b Сложение a и b
a – b Разница между a и b
a * b Умножение a на b
a / b Деление a на b
a % b Остаток от деления a на b
a // b Целая часть от деления a и b
a ** b Возведение a в степень b

Помимо вышеперечисленных арифметических действий, над числами можно осуществлять битовые операции, которые задействуют их двоичное представление. Перечень подобных операций представлен в следующей таблице, где можно найти назначение каждой из них:

Операция Назначение
a & b Побитовое И для a и b
a | b Побитовое ИЛИ для a и b
a ^ b Исключающее ИЛИ для a и b
~a Инверсия битов для a
a << b Побитовый сдвиг влево для a на b
a >> b Побитовый сдвиг вправо для a на b

Также для более эффективной обработки числовых данных в Python были добавлены особые методы, позволяющие всего за одно действие осуществлять множество сложных операций. К наиболее популярным из них относятся методы, предназначенные для быстрого нахождения квадратного корня, модуля, а также округления числа. Чтобы воспользоваться некоторыми арифметическими функциями, необходимо подключить стандартную библиотеку math при помощи вызова . Список популярных методов представлен в данной таблице:

Метод Назначение
sqrt(a) Квадратный корень из a
log(a) Натуральный логарифм из a
fabs(a) Возвращает модуль a
round(a) Округляет a до ближайшего целого
round(a, b) Округляет a до b знаков после точки
floor(a) Округляет a до меньшего целого значения
ceil(a) Округляет a до большего целого значения
isfinite(a) Проверяет, является ли a числом
modf(a) Возвращает целую и дробную части a
sin(a) Синус угла a, указанного в радианах
cos(a) Косинус угла a, указанного в радианах
tan(a) Тангенс угла a, указанного в радианах

Функция fabs модуля math вначале пытается привести аргумент к вещественному типу (float), и только потом вычисляет модуль. Для вычисления модуля числа так же есть стандартная функция abs.

Ввод числа с клавиатуры

Для того чтобы получить числовые данные от пользователя используется стандартный метод input. Его вызов позволяет получать ввод информации с клавиатуры, который выполняется во время запуска программы на компьютере. В качестве аргумента для этого метода можно использовать строку, предлагающую пользователю ввести числовые сведения. Ниже показан пример того, как ввести в Pyhon с клавиатуры число. Переменная n получает значение и отображается на экране с помощью print:

n = input("Press n: ")
print("n = " + str(n))

Press n: 10
n = 10

Максимальное значение

Получить максимальное значение целочисленной переменной, которое поддерживается в текущей версии языка Python можно с помощью переменной sys.maxsize. Как правило, на разных компьютерах это число совпадать не будет из-за разной архитектуры процессоров. На данный момент из Python были убраны любые ограничения, касающиеся размерности вводимых величин. Вывести на экран максимальное число в Python можно следующим образом:

import sys
print(sys.maxsize)

9223372036854775807

Арифметические операторы

Арифметические операторы обычно работают с числами. Есть операторы для сложения, вычитания, умножения, деления, модуля и экспоненциальных операций. Некоторые из этих операторов работают и со строками. Все арифметические операторы — специальные символы.

  • +: оператор сложения;
  • -: оператор вычитания;
  • *: оператор умножения;
  • /: оператор деления;
  • **: экспоненциальный оператор;
  • //: оператор деления этажей.

Давайте посмотрим на пример арифметических операторов в Python.

x = 15
y = 7

sum = x + y
print("addition =", sum)

subtraction = x - y
print("subtraction =", subtraction)

multiplication = x * y
print("multiplication =", multiplication)

division = x / y
print("division =", division)

modulus = x % y
print("modulus =", modulus)

exponent = x ** 2
print("exponent =", exponent)

floor_division = x // y
print("division =", floor_division)  # 2

Вывод:

Python поддерживает операторы сложения и умножения для строк.

print("addition of strings =", ("Python" + " " + "Operators"))
print("multiplication of strings =", ("Python" * 2))

Вывод:

addition of strings = Python Operators
multiplication of strings = PythonPython

Транспонирование матрицы

Транспонирование матрицы в основном включает в себя переворачивание матрицы по соответствующим диагоналям, т. е. Меняет местами строки и столбцы входной матрицы. Строки становятся столбцами и наоборот.

Например: давайте рассмотрим матрицу A с размерами 3 × 2, т.е. 3 строки и 2 столбца. После выполнения операции транспонирования размеры матрицы A будут 2 × 3, т.е. 2 строки и 3 столбца.

основном выполняет транспонирование входной матрицы и создает новую в результате операции транспонирования.

Пример:

import numpy
 
matA = numpy.array()
print("Original Matrix A:\n")
print(matA)
print('\nDimensions of the original MatrixA: ',matA.shape)
print("\nTranspose of Matrix A:\n ")
res = matA.T
print(res)
print('\nDimensions of the Matrix A after performing the Transpose Operation:  ',res.shape)

Выход:

Original Matrix A:


 ]

Dimensions of the original MatrixA: (2, 5)

Transpose of Matrix A:
 

 
 
 
 ]

Dimensions of the Matrix A after performing the Transpose Operation: (5, 2)

В приведенном выше фрагменте кода я создал матрицу размером 2 × 5, т.е. 2 строки и 5 столбцов.

После выполнения операции транспонирования размеры результирующей матрицы составляют 5 × 2, то есть 5 строк и 2 столбца.

Вещественные числа (float)

Вещественные числа поддерживают те же операции, что и целые. Однако (из-за представления чисел в компьютере) вещественные числа неточны, и это может привести к ошибкам:

Для высокой точности используют другие объекты (например Decimal и Fraction)).

Также вещественные числа не поддерживают длинную арифметику:

Простенькие примеры работы с числами:

Дополнительные методы

float.as_integer_ratio() — пара целых чисел, чьё отношение равно этому числу.

float.is_integer() — является ли значение целым числом.

float.hex() — переводит float в hex (шестнадцатеричную систему счисления).

classmethod float.fromhex(s) — float из шестнадцатеричной строки.

Помимо стандартных выражений для работы с числами (а в Python их не так уж и много), в составе Python есть несколько полезных модулей.

Модуль math предоставляет более сложные математические функции.

Модуль random реализует генератор случайных чисел и функции случайного выбора.

Округление десятичного числа

При работе с десятичными числами важно иметь возможность быстро округлить его до N знаков после запятой. Строенная функция round() выполняет эту задачу

При этом ей необходимо два числа: A – число, которое нужно округлить, B – количество знаков после запятой.

Например:

Попробуйте написать простую программу, которая будет подсчитывать чаевые. К примеру, три человека хотят разделить счет в ресторане в $87.93 и оставить 20%  чаевых.

В результате получилось число с большим количеством десятичных знаков. Функция round() округлила его до двух знаков после запятой.

Чтобы округлить десятичное число до целого числа, задайте 0 в качестве второго параметра (в данном случае тип данных не преобразуется, после запятой будет 0):

Функция round() может работать и с целыми числами. Если в качестве первого параметра задано целое число, в результате функция также вернёт целое число.

Копирование

  • Определяет поведение для экземпляра вашего класса. возвращает поверхностную копию вашего объекта — это означает, что хоть сам объект и создан заново, все его данные ссылаются на данные оригинального объекта. И при изменении данных нового объекта, изменения будут происходить и в оригинальном.

  • Определяет поведение для экземпляров вашего класса. возвращает глубокую копию вашего объекта — копируются и объект и его данные. это кэш предыдущих скопированных объектов, он предназначен для оптимизации копирования и предотвращения бесконечной рекурсии, когда копируются рекурсивные структуры данных. Когда вы хотите полностью скопировать какой-нибудь конкретный атрибут, вызовите на нём с первым параметром .

Аргументы и параметры

В функции можно использовать неограниченное количество параметров, но число аргументов должно точно соответствовать параметрам. Эти параметры представляют собой позиционные аргументы. Также Python предоставляет возможность определять значения по умолчанию, которые можно задавать с помощью аргументов-ключевых слов.

При определении функции параметры со значениями по умолчанию нужно указывать до позиционных аргументов:

Если использовать необязательный параметр, тогда все, что указаны справа, должны быть параметрами по умолчанию.

Выходит, что в следующем примере допущена ошибка:

Для вызовов это работает похожим образом. Сначала нужно указывать все позиционные аргументы, а только потом необязательные:

На самом деле, следующий вызов корректен (можно конкретно указывать имя позиционного аргумента), но этот способ не пользуется популярностью:

А этот вызов некорректен:

При вызове функции с аргументами по умолчанию можно указать один или несколько, и порядок не будет иметь значения:

Можно не указывать ключевые слова, но тогда порядок имеет значение. Он должен соответствовать порядку параметров в определении:

Если ключевые слова не используются, тогда нужно указывать все аргументы:

Второй аргумент можно пропустить:

Чтобы обойти эту проблему, можно использовать словарь:

Значение по умолчанию оценивается и сохраняется только один раз при определении функции (не при вызове). Следовательно, если значение по умолчанию — это изменяемый объект, например, список или словарь, он будет меняться каждый раз при вызове функции. Чтобы избежать такого поведения, инициализацию нужно проводить внутри функции или использовать неизменяемый объект:

Еще один пример изменяемого объекта, значение которого поменялось при вызове:

Дабы не допустить изменения оригинальной последовательности, нужно передать копию изменяемого объекта:

Позиционные аргументы

Иногда количество позиционных аргументов может быть переменным. Примерами таких функций могут быть и . Синтаксис для определения таких функций следующий:

При вызове функции нужно вводить команду следующим образом:

Python обрабатывает позиционные аргументы следующим образом: подставляет обычные позиционные аргументы слева направо, а затем помещает остальные позиционные аргументы в кортеж (*args), который можно использовать в функции.

Вот так:

Если лишние аргументы не указаны, значением по умолчанию будет пустой кортеж.

Произвольное количество аргументов-ключевых слов

Как и в случае с позиционными аргументами можно определять произвольное количество аргументов-ключевых слов следующим образом (в сочетании с произвольным числом необязательных аргументов из прошлого раздела):

При вызове функции нужно писать так:

Python обрабатывает аргументы-ключевые слова следующим образом: подставляет обычные позиционные аргументы слева направо, а затем помещает другие позиционные аргументы в кортеж (*args), который можно использовать в функции (см. предыдущий раздел). В конце концов, он добавляет все лишние аргументы в словарь (**kwargs), который сможет использовать функция.

Есть функция:

Важно, что пользователь также может использовать словарь, но перед ним нужно ставить две звездочки (**):

Порядок вывода также не определен, потому что словарь не отсортирован.

Округление при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах погрешности измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,40 м с точностью до сантиметра, то момент силы в кгс по формуле M=(mg)⋅h{\displaystyle M=(mg)\cdot h}, в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м. Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7•10−4, второго — 1/140 ≈ 7,1•10−3, относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3•10−3, что соответствует максимальной абсолютной погрешности результата ±0,059 кгс•м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс•м, таким образом, в рассчитанном значении 8,141 кгс•м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс•м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс•м.

Округление рассчитанного значения погрешности

Обычно в окончательном значении рассчитанной погрешности оставляют только первые одну-две значащие цифры. По одному из применяемых правил, если значение погрешности начинается с цифр 1 или 2(по другому правилу — 1, 2 или 3), то в нём сохраняют две значащих цифры, в остальных случаях — одну, например: 0,13; 0,26; 0,3; 0,8. То есть каждая декада возможных значений округляемой погрешности разделена на две части. Недостаток этого правила состоит в том, что относительная погрешность округления изменяется значительным скачком при переходе от числа 0,29 к числу 0,3. Для устранения этого предлагается каждую декаду возможных значений погрешности делить на три части с менее резким изменением шага округления. Тогда ряд разрешённых к употреблению округлённых значений погрешности получает вид:

  • 0,10; 0,12; 0,14; 0,16; 0,18;
  • 0,20; 0,25; 0,30; 0,35; 0,40; 0,45;
  • 0,5; 0,6; 0,7; 0,8; 0,9; 1,0.

Однако при использовании такого правила последние цифры самого результата, оставляемые после округления, также должны соответствовать приведённому ряду.

Пересчёт значений физических величин

Пересчёт значения физической величины из одной системы единиц в другую должен производиться с сохранением точности исходного значения. Для этого исходное значение в одних единицах следует умножить (разделить) на переводной коэффициент, часто содержащий большое количество значащих цифр, и округлить полученный результат до количества значащих цифр, обеспечивающего точность исходного значения. Например, при пересчёте значения силы 96,3 тс в значение, выраженное в килоньютонах (кН), следует умножить исходное значение на переводной коэффициент 9,80665 (1 тс = 9,80665 кН). В результате получается значение 944,380395 кН, которое необходимо округлить до трёх значащих цифр. Вместо 96,3 тс получаем 944 кН.

Задания для самоподготовки

1. Реализовать
последний вариант алгоритма Евклида с помощью рекурсивной функции.

2. Написать
функцию нахождения максимального значения среди переданных аргументов:

arg1, arg2, …, argN

3. Реализовать
универсальную функцию для нахождения максимального или минимального значения
среди аргументов:

arg1, arg2, …, argN

с помощью
функции-селектора, указанной в виде лямбда-функции как один параметров функции
поиска.

Видео по теме

Python 3 #1: установка и запуск интерпретатора языка

Python 3 #2: переменные, оператор присваивания, типы данных

Python 3 #3: функции input и print ввода/вывода

Python 3 #4: арифметические операторы: сложение, вычитание, умножение, деление, степень

Python 3 #5: условный оператор if, составные условия с and, or, not

Python 3 #6: операторы циклов while и for, операторы break и continue

Python 3 #7: строки — сравнения, срезы строк, базовые функции str, len, ord, in

Python 3 #8: методы строк — upper, split, join, find, strip, isalpha, isdigit и другие

Python 3 #9: списки list и функции len, min, max, sum, sorted

Python 3 #10: списки — срезы и методы: append, insert, pop, sort, index, count, reverse, clear

Python 3 #11: списки — инструмент list comprehensions, сортировка методом выбора

Python 3 #12: словарь, методы словарей: len, clear, get, setdefault, pop

Python 3 #13: кортежи (tuple) и операции с ними: len, del, count, index

Python 3 #14: функции (def) — объявление и вызов

Python 3 #15: делаем «Сапер», проектирование программ «сверху-вниз»

Python 3 #16: рекурсивные и лямбда-функции, функции с произвольным числом аргументов

Python 3 #17: алгоритм Евклида, принцип тестирования программ

Python 3 #18: области видимости переменных — global, nonlocal

Python 3 #19: множества (set) и операции над ними: вычитание, пересечение, объединение, сравнение

Python 3 #20: итераторы, выражения-генераторы, функции-генераторы, оператор yield

Python 3 #21: функции map, filter, zip

Python 3 #22: сортировка sort() и sorted(), сортировка по ключам

Python 3 #23: обработка исключений: try, except, finally, else

Python 3 #24: файлы — чтение и запись: open, read, write, seek, readline, dump, load, pickle

Python 3 #25: форматирование строк: метод format и F-строки

Python 3 #26: создание и импорт модулей — import, from, as, dir, reload

Python 3 #27: пакеты (package) — создание, импорт, установка (менеджер pip)

Python 3 #28: декораторы функций и замыкания

Python 3 #29: установка и порядок работы в PyCharm

Python 3 #30: функция enumerate, примеры использования

Дополнительные методы и операции в Python

В эти операции входят:
• int.bit_length() — количество бит, которое необходимо, чтобы представить число в двоичном виде без учёта лидирующих нулей и знака;
• int.to_bytes(length, byteorder, *, signed=False) — метод возвращает строку байтов, которые представляют это число;
• classmethod int.from_bytes(bytes, byteorder, *, signed=False) — возвращение числа из заданной строки байтов.

Пример работы последнего метода:

>>>
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes(, byteorder='big')
16711680

Для генерации последовательности на основе счетчика

Мы можем использовать функцию Python чтобы сделать итераторы соответствующими .

iterator = itertools.count(start=0, step=1)

Здесь это итератор, который ведет счет бесконечно, начиная с 0 и далее. Продолжает увеличивать счет на . Мы также можем установить десятичное или отрицательное число.

Например, если вы хотите доказать, что у вас бесконечный цикл, вы можете запустить приведенный ниже фрагмент, но это НЕ рекомендуется.

Просто убедитесь, что считается бесконечно.

for num in itertools.count(start=0, step=1):
    # Infinite loop!
    print(num)

Использование этой функции может не сразу показаться вам очевидным, вы можете комбинировать ее с другими функциями, такими как метод zip, для создания последовательностей.

Рассмотрим пример ниже:

import itertools
numbers = 

data = list(zip(itertools.count(0, 10), numbers))

print(data)

Здесь вы можете увидеть мощь итераторов. Поскольку итераторы производят выходные данные только по запросу, мы можем использовать с другой конечной итерацией, например списком.

Теперь это используется для создания индексов для элементов в списке.

Теперь, если вы хотите иметь подмножество последовательности итератора с помощью Python , вы также можете использовать для создания только части итератора.

import itertools

for num in itertools.islice(itertools.count(start=0, step=10), 4):
    print(num)

for num in itertools.islice(itertools.count(), 0, 50, 10):
    print(num)

Выход

0
10
20
30
0
10
20
30
40

Как видите, обе последовательности идентичны. Это показывает, что у вас может быть несколько подходов к созданию последовательностей.

Целые числа (int)

Числа в Python 3 ничем не отличаются от обычных чисел. Они поддерживают набор самых обычных математических операций:

x + y Сложение
x — y Вычитание
x * y Умножение
x / y Деление
x // y Получение целой части от деления
x % y Остаток от деления
-x Смена знака числа
abs(x) Модуль числа
divmod(x, y) Пара (x // y, x % y)
x ** y Возведение в степень
pow(x, y) xy по модулю (если модуль задан)

Также нужно отметить, что целые числа в python 3, в отличие от многих других языков, поддерживают длинную арифметику (однако, это требует больше памяти).

>>> 255 + 34
289
>>> 5 * 2
10
>>> 20  3
6.666666666666667
>>> 20 // 3
6
>>> 20 % 3
2
>>> 3 ** 4
81
>>> pow(3, 4)
81
>>> pow(3, 4, 27)
>>> 3 ** 150
369988485035126972924700782451696644186473100389722973815184405301748249

Битовые операции

Над целыми числами также можно производить битовые операции

x | y Побитовое или
x ^ y Побитовое исключающее или
x & y Побитовое и
x << n Битовый сдвиг влево
x >> y Битовый сдвиг вправо
~x Инверсия битов

Дополнительные методы

int.bit_length() — количество бит, необходимых для представления числа в двоичном виде, без учёта знака и лидирующих нулей.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

int.to_bytes(length, byteorder, *, signed=False) — возвращает строку байтов, представляющих это число.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() // 8) + 1, byteorder='little')
b'\xe8\x03'

classmethod int.from_bytes(bytes, byteorder, *, signed=False) — возвращает число из данной строки байтов.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes(, byteorder='big')
16711680

Операторы Python

Оператор – это символ или функция, которая выполняет то или иное действие над данными. К примеру, символ + — это оператор сложения.

В Python присутствуют как общие, так и специальные математические операторы.

Ниже приведена таблица наиболее распространённых математических операторов Python.

Операция Результат
x + y Сложение (сумма x и y)
x — y Вычитание (разница между x и y)
-x Смена знака x
+x Тождественность x
x * y Умножение x на y
x / y Деление x на y
x // y Получение целой части от деления x на y
x % y Остаток от деления x / y
x ** y Возведение в степень

Также руководство охватывает использование операторов присваивания.

Интеграция аккаунта вк и инстаграмма

Для того, чтобы добавить ссылку с Инстаграм-аккаунта на свою страницу в Вконтакте, вам необходимо выполнить пару лёгких действий, которые не отнимут у вас много времени. Ниже мы предоставим вам полную подробную инструкцию по слиянию этих соц сетей:

  • Для начала вам необходимо зайти на свою страницу в Вконтакте;
  • в верхней правой части экрана вам необходимо нажать на вашу аватарку;
  • нажав на неё перед вами появится список разделов, вам же нужен пункт под названием «Редактировать страницу»;
  • появится вкладка «Основные» вам необходимо справа найти список всех возможных полей для редактирования и найти вкладку Контакты она вторая после основных;
  • сразу же перед вами появится список социальных сетей, среди которых: Instagram и Twitter. Чтобы интеграция произошла нажмите на «Настроить импорт» напротив вкладки инстраграма;
  • вслед за этим появится окно, где вы должны будете авторизироваться в Инстаграм, заполнив поля с логином и паролем. Когда вы всё запишите, нажмите на «Войти»;
  • Дальше вам необходимо подтвердить намеренность связи 2х социальных сетей
  • Далее вам необходимо вернуть в редактирование страницы вконтакте
  • Снова перейти в раздел вконтакте и вы увидите что напротив значка инстаграмма будет стоять статус «Настроить импорт»
  • Вам необходимо нажать на него
  • Перед вами всплывет окошечко настроек импорта вы можете задать необходимые для себя параметры интеграции
  • На этом все аккаунты связаны, вы в любой момент можете нажать на шестеренку и настроить интеграцию по своему усмотрению.

После того как все ваши действия будут сохранены, на вашей странице появится ссылка на ваш Инстаграм-аккаунт. А все фотографии будут траслироваться из инстаграма на стену в вк или сохранятся в альбом который вы укажете в настройках при интеграции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector