Многомерные массивы

Перегрев видеокарты

Инициализация

Теперь есть два способа инициализировать двумерный массив в Java:

  1. используя литерал массива во время создания.
  2. используя вложенный цикл for.

В следующем примере мы узнаем, как выполнить цикл через двумерный массив, инициализировать каждый элемент и вывести (напечатать).

// initializing two dimensional array as literal 
String[][] names = { 
 {"Sam", "Smith"},
 {"Robert", "Delgro"},
 {"James", "Gosling"},
};
 int[][] board = new int;
 for (int i = 0; i < board.length; i++) {
 for (int j = 0; j < board.length; j++) {
 board = i + j;
 }
                   }

Вам понадобится столько циклов, какова размерность массива. Например, для явной инициализации трехмерного массива потребуются три вложенных цикла for. С другой стороны, для инициализации двумерного массива достаточно двух вложенных циклов for.

Как вывести

Если вы хотите получить доступ к каждому элементу, то вам нужно выполнить итерацию по двумерному массиву, используя два цикла for. Почему? Потому что вам нужно два индекса для доступа к отдельному элементу.

Вы можете использовать расширенный для каждого цикла или классический для цикла со счетчиком. Для того, чтобы напечатать(сделать вывод) содержимое 2D массива, вы можете использовать либо этот метод, либо Arrays.deepToString(), который возвращает строку всех элементов.

import java.util.Arrays;

/**
* Java Program to initialize and print two dimensional array in Java.
*/
class Basics {

public static void main(String args[]) {

// initializing two dimensional array as literal
String[][] names = {
{"John", "Smith"},
{"Javin", "Paul"},
{"James", "Gosling"},
};

// how to initialize two dimensional array in Java
// using for loop
int[][] board = new int;

for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board.length; j++) {
board = i + j;
}
}

// now let's print a two dimensional array in Java
for (int[] a : board) {
for (int i : a) {
System.out.print(i + "\t");
}
System.out.println("\n");
}

// printing 2D array using Arrays.deepToString() method
System.out.println("another way to print 2D arrays");
System.out.println(Arrays.deepToString(board));

}

}
Output:
0 1 2

1 2 3

2 3 4

another way to print 2D arrays
, , ]

14 ответов

Прежде всего, является свойством, поэтому это будет вместо .

И он вернет 10, заявленный размер. Элементы, которые вы не объявляете явно, инициализируются с 0.

Чтобы узнать длину массива , используйте свойство. Это как , не используйте в основном используется для размера объектов, связанных со строками.

Свойство length всегда показывает общее выделенное пространство для массива во время инициализации.

Если у вас возникнут какие-либо проблемы подобного рода, просто запустите их. Удачного программирования!

Массивы — это статическое распределение памяти, поэтому, если вы инициализируете массив целых чисел:

Длина будет всегда 15, независимо от того, сколько индексов заполнено.

И еще одна вещь, когда вы инициализируете массив целых чисел, все индексы будут заполнены «0».

В этом случае arr.length вернет 10, размер выделенного вами массива. Логический размер здесь не применим, так как это массив фиксированной длины.

Когда вы инициализируете массив:

Java создаст массив из 10 элементов и инициализирует все из них до 0. См. для получения подробных сведений о начальных значениях для этого и других примитивных типов.

В Java ваш «фактический» и «логический» размер совпадают. Во время выполнения все слоты массива заполняются значениями по умолчанию при выделении. Итак, ваш содержит 10.

`

Итак, мы создали массив с объемом памяти 3 …
вот как это выглядит на самом деле

0й 1й 2й ………..> Индекс
2 4 5 ………..> Число

Итак, как вы видите, размер этого массива равен 3, но индекс массива — только до 2, поскольку любой массив начинается с 0-го индекса.

второй оператор ‘output должен быть равен 3, поскольку длина массива равна 3 … Пожалуйста, не путайте значение индекса с длиной массива ….

ура!

Он будет содержать фактический размер массива, так как это то, что вы инициализировали массив, когда он был объявлен. В Java нет понятия «логического» размера массива, поскольку в этом случае значение по умолчанию 0 так же логично, как и значения, которые вы установили вручную.

Он содержит выделенный размер, 10. Остальные индексы будут содержать значение по умолчанию, равное 0.

Если вам нужен логический размер массива, вы можете просмотреть все значения в массиве и проверить их на ноль. Увеличьте значение, если оно не равно нулю, и это будет логический размер. Поскольку размер массива фиксирован, у вас нет встроенного метода, возможно, вам стоит взглянуть на коллекции.

Должно быть:

Скобки следует избегать.

Java-массивы на самом деле имеют фиксированный размер, а другие ответы объясняют, что .length на самом деле не делает то, что вы ожидаете. Я просто хотел бы добавить, что с учетом вашего вопроса вы, возможно, захотите использовать ArrayList, массив, который может увеличиваться и уменьшаться:

Здесь метод .size () покажет вам количество элементов в вашем списке, и вы можете увеличивать его по мере добавления.

если вы подразумеваете под «логическим размером» индекс массива, то просто
    int arrayLength = arr.length-1;
поскольку индекс массива начинается с «0», то логический или «индекс массива» всегда будет меньше фактического размера на «один».

является типом массив с размером . Это массив элементов .
Если мы не инициализируем массив по умолчанию, элементы массива содержат значение по умолчанию. В случае массива int по умолчанию используется значение .

length — это свойство, которое применимо для массива.
здесь даст .

Обработка элементов массива

Существует несколько стандартных алгоритмов
обработки элементов массива:

  1. Удаление значения из массива по
    определенному индексу.

  2. Вставка значения в массив по
    определенному индексу.

  3. Сортировка элементов массива.

Начнем с первого
– удаления элемента из массива. Создадим вот такой массив:

final int N = 9;
short a = new shortN;

запишем туда
значения с 1 по 9:

for(int i=;i < N;++i) ai = (short)(i+1);

Теперь удалим
элемент со значением 6. Для этого нужно проделать такую операцию:

Причем, сначала
перемещаем 7-ку на место 6-ку, затем 8-ку и 9-ку, то есть, двигаемся от
удаляемого элемента к концу массива. Программа будет выглядеть так:

final int N = 9;
short a = new shortN;
 
for(int i=;i < N;++i) ai = (short)(i+1);
 
for (int i = 5; i < N-1; ++i)
    ai = ai + 1;
 
for (short val  a) System.out.print(val+" ");

Здесь мы начали
движение с 5-го индекса (то есть 6-го элемента массива) и на первой итерации
делаем операцию a=a, то есть, 7-ку ставим на место 6-ки.
На следующей итерации уже имеем a=a – перемещаем
8-ку и, затем, a=a – перемещаем 9-ку. Все, в итоге
значение 6 было удалено из массива.

Теперь реализуем второй алгоритм и
вставим значение 4, которого не хватает вот в таком массиве:

short a = new short {1, 2, 3, 5, 6, 7, 8, 9, 9};

Здесь в конце записаны две 9, чтобы мы
могли сдвинуть все элементы на 1 вправо и вставить элемент со значением 4. То
есть, нам следует выполнить такую операцию над элементами массива:

Обратите
внимание, что сдвиг осуществляется с конца массива. Если мы начнем это делать с
4-го, то просто затрем все остальные значения пятеркой

Итак, вот программа,
которая вставляет 4-ку в этот массив:

short a = new short {1, 2, 3, 5, 6, 7, 8, 9, 9};
 
for (int i = 8; i > 3; --i)
 
    ai = ai - 1;
 
a3 = 4;
 
for (short val  a) System.out.print(val+" ");

Здесь счетчик i в цикле сначала
равен 8 – это индекс последнего элемента нашего массива. Затем, делается
операция a=a, то есть, a=a. Таким
образом, мы присваиваем 8-му элементу значение 7-го элемента. Это и есть
смещение значения вправо. На следующей итерации i уменьшается на
1, то есть, равно 7 и операция повторяется: a=a и так далее,
последний смещаемый элемент будет: a=a. После этого
i будет равно 3,
условие цикла становится ложным и он завершается. После смещения, мы
присваиваем 4-му элементу массива значение 4 и выводим получившийся массив на
экран.

Теперь
рассмотрим довольно распространенный алгоритм сортировки элементов массива по
методу всплывающего пузырька. Реализуем его на языке Java.

byte a = {3, 5, 1, 6, 2, 4};
 
for (int i = ; i < a.length-1; ++i) {
    byte min = ai;
    int pos = i;
 
    for (int j = i + 1; j < a.length; ++j)
        if (min > aj) {
            pos = j;
            min = aj;
        }
 
    byte t = ai;
    ai = apos;
    apos = t;
}
 
for (short val  a) System.out.print(val+" ");

Здесь первый
цикл показывает с какого элемента искать минимальный, то есть, это
местоположение той вертикальной черты в методе всплывающего пузырька. Затем,
задаем две вспомогательные переменные min – минимальное найденное
значение, pos – индекс
минимального элемента в массиве. Второй вложенный цикл перебирает все
последующие элементы массива и сравнивает его с текущим минимальным и если
будет найдено меньшее значение, то min становится
равной ему и запоминается его позиция. Вот эти три строчки меняют местами
текущее значение элемента с найденным минимальным, используя вспомогательную
переменную t. И в конце
программы выполняется вывод элементов массива на экран.

Запустим эту
программу и посмотрим как она работает. Кстати, если мы теперь хотим выполнить
сортировку по убыванию, то достаточно изменить вот этот знак на
противоположный.

Видео по теме

#1 Установка пакетов и первый запуск программы

#2 Структура программы, переменные, константы, оператор присваивания

#3 Консольный ввод/вывод, импорт пакетов

#4 Арифметические операции

#5 Условные операторы if и switch

#6 Операторы циклов while, for, do while

#7 Массивы, обработка элементов массива

#8 (часть 1) Строки в Java, методы класса String

#8 (часть 2) Строки — классы StringBuffer и StringBuider

#9 Битовые операции И, ИЛИ, НЕ, XOR

#10 Методы, их перегрузка и рекурсия

Итерация

Как перебрать все элементы массива, используя цикл Java for:

String[] stringArray = new String;

for(int i=0; i < stringArray.length; i++) {
    stringArray = "String no " + i;
}

for(int i=0; i < stringArray.length; i++) {
    System.out.println( stringArray );
}

В этом примере:

  1. Сначала создается массив ссылок String. Когда  впервые создаете массив ссылок на объекты, каждая из ячеек в массиве указывает на ноль, а не на объект.
  2. Первый из двух циклов for выполняет итерацию по массиву String, создает строку и делает ссылку на ячейку этой строкой.
  3. Второй из двух циклов for перебирает массив String и печатает все строки, на которые ссылаются ячейки.

Если бы это был массив int (примитивные значения), он мог бы выглядеть так:

int[] intArray = new int;

for(int i=0; i < intArray.length; i++) {
    intArray = i;
}

for(int i=0; i < intArray.length; i++) {
    System.out.println( intArray );
}

Переменная i инициализируется равной 0 и работает до длины массива минус 1. В этом случае i принимает значения от 0 до 9, каждый раз повторяя код внутри цикла for один раз, и для каждой итерации i имеет другое значение.

Как перебрать массив с помощью цикла «for-each» в Java. Вот как это выглядит:

int[] intArray = new int;

for(int theInt : intArray) {
    System.out.println(theInt);
}

Цикл for-each дает вам доступ к каждому элементу в массиве по одному, но не информацию об индексе каждого элемента. Есть доступ только к значению. Изменить значение элемента в этой позиции невозможно. Если это нужно, используйте обычный цикл for, как показано ранее.

Цикл for-each также работает с массивами объектов. Вот пример, как выполнить итерацию массива объектов String:

String[] stringArray = {"one", "two", "three"};

for(String theString : stringArray) {
    System.out.println(theString);
}

Как объявить двумерный массив в Java?

Вместо одной скобки вы будете использовать две, например, int [] [] — двумерный целочисленный массив. Определяется это следующим образом:

int[][] multiples = new int; // 2D integer array 4 строки и 2 столбца 
String[][] cities = new String; // 2D String array 3 строки и 3 столбца

Кстати, когда вы изначально объявляете, вы должны помнить, что нужно указать первое измерение, например, следующее объявление является неверным:

int[][] wrong = new int[][]; // not OK, you must specify 1st dimension 
int[][] right = new int[];

Выражение выдаст ошибку «переменная должна предоставить либо выражения измерения, либо инициализатор массива» во время компиляции. С другой стороны, при заполнении, второе измерение является необязательным и даже если вы не укажете, компилятор не будет ругаться, как показано ниже:

String[][] myArray = new String[]; // OK 
String[][] yourArray = new String; // OK

Потому что двумерный массив не что иное, как массив из одномерных массивов, из-за этого, вы также можете создать двумерный, где отдельные одномерные имеет разную длину, как показано в следующем примере.

class 
TwoDimensionalArray { public static void main(String[] args) {
String[][] salutation = {
{"Mr. ", "Mrs. ", "Ms. "},
{"Kumar"}
};
 // Mr. Kumar
System.out.println(salutation + salutation);
// Mrs. Kumar
System.out.println(salutation + salutation);
    }
}
The output from this program is: 
Mr. Kumar 
Mrs. Kumar

В этом примере вы можете видеть объявление двумерного массива, но его первая строка имеет 3 элемента, а вторая строка имеет только один элемент.

Вы можете получить доступ к элементам, используя оба индекса или только один индекс. Например, salutation представляет единственную строку в Java, в то время как salutation представляет одномерный.

Пока мы только что объявили и создали массив, но не инициализировали. Здесь можно увидеть значения по умолчанию для различных типов.

boolean[][] booleans = new boolean; 
System.out.println("booleans : " + booleans); 
byte[][] bytes = new byte; 
System.out.println("bytes : " + bytes); 
char[][] chars = new char; 
System.out.println("chars : " + (int)chars); 
short[][] shorts = new short; 
System.out.println("short : " + shorts); 
int[][] ints = new int; 
System.out.println("ints : " + ints); 
long[][] longs = new long; 
System.out.println("longs : " + longs); 
float[][] floats = new float; 
System.out.println("floats : " + floats); 
double[][] doubles = new double; 
System.out.println("doubles : " + doubles);
Object[][] objects = new Object; 
System.out.println("objects : " + objects); 
Output booleans : false bytes : 0 chars : 0 short : 0 ints : 0 longs : 0 floats : 0.0 doubles : 0.0 objects : null

Массив символов немного сложнее, потому что, если вы печатаете 0 как символ, он напечатает нулевой символ, и поэтому я использовал его целочисленное значение, приведя к int.

Сортировка массивов

 Метод  Arrays.sort([]a)

Метод sort() из класса Arrays использует усовершенствованный алгоритм Быстрой сортировки (Quicksort), который эффективен  для большинства  набора данных.  Метод упорядочивает весь массив в порядке возрастания значений элементов.

Формат метода

Arrays.sort([]a),

[]a – исходный массив, после работы метода массив будет содержать упорядоченные значения элементов в порядке возрастания.

Пример.

//исходный массив
double a[] = { 41.5, 11.4, 11.2, 3.1, 4.3, 5.5 };
//сортировка
Arrays.sort(a);
//результат сортировки
for(int i=0; i<a.length; i++)
System.out.print(a+"  ");  //3.1  4.3  5.5  11.2  11.4  41.5 
System.out.println();

 Метод  Arrays.sort([]a,index1,index2)

выполняет сортировку части массива по возрастанию массива от index1 до index2 минус единица

 Формат метода

Arrays.sort([]a,index1,index2),

 []a – исходный массив

index1, index2 — начальный и конечный индексы, определяющие диапазон упорядочивания элементов по возрастанию. 

Пример.

//исходный массив
int b[] ={2,1,0,50,30,20,10};
//сортировка  от 0 элемента до 3, сам третий элемент не входит
Arrays.sort(b,0,3);
//результат сортировки
for(int i=0; i<b.length; i++)
System.out.print(b+"  ");  // 0  1  2  50  30  20  10
System.out.println();
 
//сортировка  элементов от 3 до конца массива bb.length
Arrays.sort(b,3,b.length);
for(int i=0; i<b.length; i++)
System.out.print(b+"  "); //0  1  2  10  20  30  50
System.out.println();

 Сортировка  массива по убыванию

Формат метода

 Arrays.sort([]a, Collections.reverseOrder());

 При сортировке массива в обратном порядке (по убыванию) нужно использовать вместо примитивного типа, объектный тип.

Пример.

//// сортировrка по убыванию
//вместо примитивного типа double
//используем объектный тип   Double
   Double a[] = new Double;
   //заполняем массив случаными числами
   for(int i = 0; i <  a.length; i++) {
     a =  (double)(Math.random() * 20);
      System.out.format("%.2f   ", a);
         }
System.out.println();  
System.out.println("Массив,отсотированный по убыванию");
//Сортируем массив
    Arrays.sort(a, Collections.reverseOrder());
//Выводим отсортированный массив на консоль.
for(int i = 0; i <  a.length; i++) {
     System.out.format("%.2f   ", a);
     }
System.out.println();  

Результат

15,39   1,54   17,47   15,50   3,83   16,43   18,87   15,54   8,23   12,97  

Массив,отсотированный по убыванию

18,87   17,47   16,43   15,54   15,50   15,39   12,97   8,23   3,83   1,54   

Как сохранить сбережения? Куда вложить деньги?

Банковские вклады

Самый простой, понятный и доступный актив, в который можно вложить сбережения, чтобы защитить их от инфляции — банковские вклады или депозиты. Но у него есть серьезный минус — слишком маленькая доходность, которая в большинстве случаев полностью не перекрывает реальную инфляцию (правда, в отдельные периоды могут быть и исключения).

Существуют разные виды депозитов, что дает возможность выбрать наиболее подходящий вариант, исходя из тех факторов, что я описывал выше. Подробнее об этом писал в статье Как выбрать вклад в банке?

Преимущества:

  • Максимальная простота и доступность для любых сумм;
  • Государственные гарантии сохранности сбережений;
  • Выбор подходящего вида вклада (например, с возможностью пополнения).

Недостатки:

  • Слишком низкая доходность, часто не перекрывающая инфляцию;
  • Вероятность в кризисной ситуации попасть под какие-то ограничительные меры.

Иностранная валюта

Покупка иностранной валюты — отличный способ сохранить и защитить сбережения от инфляции и девальвации, который так же, как и первый вариант, доступен широкому кругу лиц и для любых сумм. Но здесь, в отличие от банковских вкладов, защита сбережений будет осуществляться не за счет получения дохода, а за счет роста в цене самого актива. А рост этот не гарантирован, также в определенные моменты могут наблюдаться корректировочные падения.

Поэтому данный инструмент сохранения и защиты сбережений требует чуть более высокого уровня финансовой грамотности, чем первый. В частности, нужно выбирать оптимальные моменты для покупки валюты по выгодному курсу. Подробнее на эту тему рекомендую прочесть статью Как правильно покупать доллары?

Преимущества:

  • Простота приобретения, доступность для любых сумм;
  • В долгосрочной перспективе всегда растет в цене;
  • Мгновенная ликвидность — в любой момент нужно продать нужную сумму.

Недостатки:

  • Опасно для краткосрочного сохранения сбережений (курс может упасть);
  • Хранить валюту дома опасно, вкладывать в другие активы — есть свои риски.

Государственные облигации

Доходность государственных облигаций можно увеличить, если приобретать их на срок не менее 3 лет через индивидуальный инвестиционный счет, и получить налоговый вычет. Вообще, для покупки облигаций вам понадобится открывать счет у брокера. Исключение составляют «народные» облигации ОФЗ-н, которые продаются через уполномоченные банки.

Преимущества:

  • Доходность выше, чем у банковских вкладов;
  • Очень высокая надежность;
  • Возможность приобщиться к фондовому рынку, начав с простого и надежного актива.

Недостатки:

  • Интересен только для долгосрочных вложений;
  • В кризисные периоды доходность может не перекрыть реальную инфляцию.

Золото

Если для того, чтобы сохранить сбережения, вы хотите вложить их в золото — вы должны понимать, что это вариант не просто на долгосрочную, а на очень долгосрочную перспективу. В кратко- и среднесрочной перспективе золото может падать в цене и достаточно сильно. Сильнее, чем, например, иностранная валюта. По этой причине вкладывать деньги в золото в моменты его роста в цене, и особенно — в моменты сильного роста, очень рискованно.

Многие по умолчанию считают золото каким-то самым надежным активом, который всегда будет в цене. Посмотрите график изменения цены на золото, чтобы понимать, с чем вы имеете дело. Вместе с тем, в очень долгосрочной перспективе, по моему мнению, золото все же будет расти в цене, поэтому если речь идет о длительной защите сбережений — это хороший вариант.

Но следует понимать, что речь идет именно о банковском золоте в слитках. Все другие варианты вложения в золото более рисковые. И однозначно не стоит для защиты сбережений приобретать ювелирные изделия — это совершенно не то золото, которое будет расти в цене.

Преимущества:

  • Традиционно самый надежный консервативный актив;
  • В долгосрочной перспективе всегда растет в цене;
  • Можно покупать разные по весу слитки (чем больше вес, тем меньше цена за грамм).

Недостатки:

  • Не подойдет для краткосрочного сохранения средств;
  • Низкая ликвидность (легко купить, но тяжело продать — продают золото многие банковские отделения, а принимают единичные);
  • Большая маржа между ценой покупки и продажи.

Недвижимость

Многие также считают, что лучший вариант сохранения сбережений от инфляции и девальвации — вложение их в недвижимость, потому что она традиционно всегда растет в цене. Однако, это очень поверхностный взгляд. В отдельные периоды (например, в кризис), недвижимость может падать в цене, но самое главное — она требует постоянных расходов на содержание, а вот доход может приносить не всегда.

Кроме того, при покупке недвижимости возникает немало рисков, вплоть до мошенничества и полной потери вложений. Так что лично я не назвал бы вложения в недвижимость очень хорошим способом сохранения сбережений, но для тех, кто хорошо разбирается и ориентируется в этом рынке, это может быть и лучший вариант.

Подробнее о разных вариантах вложения в недвижимость я писал в статье Стратегии инвестирования в недвижимость.

Преимущества:

  • В долгосрочной перспективе всегда растет в цене;
  • Может приносить как пассивный доход от сдачи в аренду, так и спекулятивный от перепродажи;
  • Можно выбрать разные варианты, например, коммерческую недвижимость, которая доходнее.

Недостатки:

  • Требует больших дополнительных расходов при покупке и постоянных расходов на содержание;
  • Может простаивать, не принося доход;
  • Низкая ликвидность — быстро и выгодно продать очень сложно;
  • Риски мошенничества, замораживания строительства и т.д.

2 Метод Arrays.toString()

И первый метод, который мы рассмотрим, будет называться . Но для начала немного предыстории.

У каждого массива в Java есть метод , который возвращает «текстовое представление массива». Получить текстовое представление массива можно с помощью такой конструкции:

Где — это имя переменной-массива, а — это имя переменной, в которую сохранится строковое представление массива.

Но если вы попробуете вывести массив на экран с помощью метода , скорее всего увидите что-то типа:

Первая буква означает, что это массив типа , а символы после – адрес массива в памяти. С одной стороны, переменная-массив именно эту информацию и хранит, а с другой — мы ожидали иное, правда?

Хотелось бы увидеть значения, которые есть в массиве! И вот для того, чтобы увидеть именно значения массива, и придумали метод . Его вызов выглядит так:

Примеры:

Переменная будет содержать строковое значение:

Переменная будет содержать строковое значение:

Переменная будет содержать строковое значение:

Копирование

Возможно несколькими способами.

Копирование массива путем итерации массива

Первый способ — это перебрать массив и скопировать каждое значение исходного массива в целевой массив. Вот как выглядит копирование массива с использованием этого метода:

int[] source = new int;
int[] dest   = new int;

for(int i=0; i < source.length; i++) {
    source = i;
}

for(int i=0; i < source.length; i++) {
    dest = source;
}

Первые два массива int созданы. Во-вторых, исходный массив инициализируется значениями от 0 до 9 (от 0 до длины массива минус 1). В-третьих, каждый элемент в исходном массиве копируется в целевой массив.

Копирование с помощью Arrays.copyOf()

Вот как выглядит копирование массива:

int[] source = new int;

for(int i=0; i < source.length; i++) {
    source = i;
}

int[] dest = Arrays.copyOf(source, source.length);

Метод Arrays.copyOf() принимает 2 параметра. Первый — это массив для копирования. Второй — это длина нового массива — можно использовать для указания количества копируемых элементов из исходного массива.

Копирование с использованием Arrays.copyOfRange()

Метод Arrays.copyOfRange() копирует диапазон массива, не обязательно полный массив. Процесс копирования с ним:

int[] source = new int;

for(int i=0; i < source.length; i++) {
    source = i;
}

int[] dest = Arrays.copyOfRange(source, 0, source.length);

Метод Arrays.copyOfRange() принимает 3 параметра. Первый — это массив для копирования. Второй  — это первый индекс в исходном массиве, который нужно включить в копию. Третий  — это последний индекс в исходном массиве, который будет включен в копию (исключено — поэтому передача 10 будет копировать до и включая индекс 9).

1 Массивы в памяти

Картинки в предыдущих примерах немного неточны.

При создании массивов (как и при создании строк) в памяти выделяются два блока памяти: один для хранения самого массива (контейнера), а второй — под переменную, которая хранит его адрес. Уточненная ситуация изображена на картинке ниже:

Зеленым цветом изображен массив на элементов типа и переменная типа , которая хранит
адрес (ссылку) массива типа в памяти.

Для сравнения синим цветом обозначена обычная переменная типа , которая хранит значение .

Чем-то напоминает хранение строк в памяти, не находите?

Верно, строки. И как при работе со строками, «переменные типа массив» можно присваивать друг другу:

Код Пояснение
Создаем массив на элементов типа .
В ячейку с индексом записываем значение .
В ячейку с индексом записываем значение .
В переменную сохраняем адрес, который есть в переменной .
Теперь и указывают на один и тот же объект-массив в памяти.
В ячейку с индексом объекта-массива записываем сумму значений, которые хранятся в ячейках (хранится ) и (хранится ).

При этом объект-массив будет оставаться там, где и был, а переменные и будут хранить одинаковые адреса (ссылки) на один и тот же объект. Смотрите картинку:

3 Операции с ArrayList

Изначально длина только что созданного списка равна нулю: он содержит 0 элементов. Если в список добавить один элемент, его длина увеличится на 1. Если удалить добавленный элемент, опять уменьшится до нуля.

Более подробно можно узнать о методах класса из таблицы:

Методы Описание
Добавляет в список переданный элемент
Добавляет элемент в определенное место списка.
Возвращает элемент, который находится под номером
Меняет значение элемента с номером на
Удаляет элемент под номером . Возвращает удаленный элемент.
Удаляет элемент: нужно передать сам элемент в список. Если таких элементов несколько, будет удален первый из них.
Очищает список — удаляет все элементы из списка.
Проверяет, содержится ли в списке элемент .
Проверяет, пустой список или нет. Равна ли длина списка нулю.
Возвращает размер списка — количество элементов списка.
Возвращает массив, содержащий те же элементы, что и список.Массив нужно передать в метод.

Данные методы позволяют делать со списком практически все возможные операции: менять элементы местами, добавлять элементы, удалять элементы. Можно даже очистить список одной командой или преобразовать список в массив.

Объекты класса

Каждый массив имеет связанный объект класса, совместно используемый со всеми другими массивами с тем же типом компонента.

// Java program to demonstrate
// Class Objects for Arrays

class Test
{
public static void main(String args[])
{
int intArray[] = new int;
byte byteArray[] = new byte;
short shortsArray[] = new short;

// array of Strings
String[] strArray = new String;

System.out.println(intArray.getClass());
System.out.println(intArray.getClass().getSuperclass());
System.out.println(byteArray.getClass());
System.out.println(shortsArray.getClass());
System.out.println(strArray.getClass());
}
}

Теперь, как вы знаете, что массивы являются объектом класса. Членами массива являются следующие элементы:

  • Конечная длина открытого поля, содержащего количество компонентов. Длина может быть положительной или нулевой.
  • Все члены наследуются от класса Object; единственный метод объекта, который не наследуется, является метод clone.
  • Открытый метод clone () переопределяет метод clone в объекте класса.

Клонирование массивов

При клонировании одномерного массива, например Object[], выполняется копия с новым массивом, содержащим копии элементов исходного, а не ссылки.

// Java program to demonstrate
// cloning of one-dimensional arrays

class Test
{
public static void main(String args[])
{
int intArray[] = {1,2,3};

int cloneArray[] = intArray.clone();

// will print false as deep copy is created
// for one-dimensional array
System.out.println(intArray == cloneArray);

for (int i = 0; i < cloneArray.length; i++) {
System.out.print(cloneArray+" ");
}
}
}

Клон многомерного массива (например, Object [] []) является копией и это означает, что он создает только один новый массив с каждым элементом и ссылкой на исходный массив элементов, но вложенные массивы являются общими.

// Java program to demonstrate
// cloning of multi-dimensional arrays

class Test
{
public static void main(String args[])
{
int intArray[][] = {{1,2,3},{4,5}};

int cloneArray[][] = intArray.clone();

// will print false
System.out.println(intArray == cloneArray);

// will print true as shallow copy is created
// i.e. sub-arrays are shared
System.out.println(intArray == cloneArray);
System.out.println(intArray == cloneArray);

}
}

Оцени статью

Оценить

Средняя оценка / 5. Количество голосов:

Видим, что вы не нашли ответ на свой вопрос.

Помогите улучшить статью.

Спасибо за ваши отзыв!

Сортировка объектов

Показанный ранее пример Arrays.sort() работает только для массивов примитивных типов данных, которые имеют порядок:

  • естественный;
  • числовой;
  • символьный в таблице ASCII (двоичное число, представляющее символ).

У объектов может не быть естественного порядка сортировки, поэтому вам нужно предоставить другой объект, который может определять порядок ваших объектов. Такой объект называется компаратором — это интерфейс.

Вот первый класс для объектов, которые мы хотим отсортировать:

private static class Employee{
    public String name;
    public int    employeeId;

    public Employee(String name, int employeeId){
        this.name       = name;
        this.employeeId = employeeId;
    }
}

Класс Employee — это простая модель сотрудника, у которого есть имя и идентификатор. Вы можете отсортировать массив объектов Employee по имени или по идентификатору сотрудника.

Вот первый пример сортировки массива объектов Employee по их имени с помощью метода Arrays.sort():

Employee[] employeeArray = new Employee;

employeeArray = new Employee("Xander", 1);
employeeArray = new Employee("John"  , 3);
employeeArray = new Employee("Anna"  , 2);

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        return e1.name.compareTo(e2.name);
    }
});


for(int i=0; i < employeeArray.length; i++) {
    System.out.println(employeeArray.name);
}
  1. Сначала объявляется массив.
  2. Три объекта Employee создаются и вставляются в массив.
  3. Метод Arrays.sort() вызывается для сортировки массива. В качестве параметра передаем массив employee и реализацию Comparator, которая может определять порядок объектов Employee. Это создает анонимную реализацию интерфейса Comparator.

В примере важно уловить реализацию метода compare() анонимной внутренней реализации интерфейса Comparator. Этот метод возвращает:

  • положительное число, если первый объект «больше»(позже в порядке сортировки), чем второй объект;
  • 0 — они «равны»(в порядке сортировки);
  • отрицательное число, если первый объект «меньше» (ранее в порядке сортировки), чем второй объект.

В приведенном выше примере мы просто вызываем метод String.compare(), который выполняет для нас сравнение (сравнивает имена сотрудников).

После сортировки массива мы перебираем его и выводим имена сотрудников. Вывод:

Anna
John
Xander

Обратите внимание, как порядок был изменен по сравнению с порядком, в котором они были первоначально вставлены в массив. Сортировка объектов Employee по их идентификатору сотрудника на основании предыдущего примера с измененной реализацией метода compare() анонимной реализации интерфейса Comparator:

Сортировка объектов Employee по их идентификатору сотрудника на основании предыдущего примера с измененной реализацией метода compare() анонимной реализации интерфейса Comparator:

Employee[] employeeArray = new Employee;

employeeArray = new Employee("Xander", 1);
employeeArray = new Employee("John"  , 3);
employeeArray = new Employee("Anna"  , 2);

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        return e1.employeeId - e2.employeeId;
    }
});

for(int i=0; i < employeeArray.length; i++) {
    System.out.println(employeeArray.name);
}

Вывод:

Xander
Anna
John

Чтобы сравнить объекты Employee в массиве сначала по их имени, а если оно совпадает, то по их идентификатору сотрудника, реализация compare():

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        int nameDiff = e1.name.compareTo(e2.name);
        if(nameDiff != 0) { return nameDiff; }
    
        return e1.employeeId - e2.employeeId;
    }
});

Как создать массив в Java

При объявлении массива создается только ссылка на массив. Чтобы фактически создать или предоставить память массиву, надо создать массив следующим образом: общая форма new применительно к одномерным и выглядит следующим образом:

Здесь type указывает тип данных, size — количество элементов в массиве, а var-name-имя переменной массива.

Пример:

int intArray[];    //объявление
intArray = new int;  // выделение памяти 

или

int[] intArray = new int; // объединение

Литералы массива

В ситуации, когда размер массива и переменные уже известны, можно использовать литералы.

int[] intArray = new int[]{ 1,2,3,4,5,6,7,8,9,10 }; 
 // Declaring array literal
  • Длина этого массива определяет длину созданного массива.
  • Нет необходимости писать int[] в последних версиях Java

Доступ к элементам массива Java с помощью цикла for

Доступ к каждому элементу массива осуществляется через его индекс. Индекс начинается с 0 и заканчивается на (общий размер)-1. Все элементы могут быть доступны с помощью цикла for.

// accessing the elements of the specified array
for (int i = 0; i < arr.length; i++)
  System.out.println("Element at index " + i + 
                                " : "+ arr);

// Пример для иллюстрации создания array // целых чисел, помещает некоторые значения в массив, // и выводит каждое значение.

class GFG { public static void main (String[] args) { // declares an Array of integers. int[] arr;

// allocating memory for 5 integers. arr = new int;

// initialize the first elements of the array arr = 10;

// initialize the second elements of the array arr = 20;

//so on… arr = 30; arr = 40; arr = 50;

// accessing the elements of the specified array for (int i = 0; i < arr.length; i++) System.out.println(«Element at index » + i + » : «+ arr); } } В итоге получаем:

Element at index 0 : 10
Element at index 1 : 20
Element at index 2 : 30
Element at index 3 : 40
Element at index 4 : 50

Заключение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector