Mingw — бесплатный с и с++ компилятор для windows

Установка MinGW

Для установки требуется подключение к сети интернет.

Запустите установщик, он скачает и установит все необходимые файлы.

Жмите «Next».

Диалог сообщает нам, что программа запущена администратором компьютера и будет установлена для всех пользователей.

На этом этапе укажем загружать последнюю версию программного обеспечения.

Соглашаемся с условиями лицензионного соглашения и жмём «Next».

Укажем путь для установки. Не рекомендуется устанавливать в директорию или субдиректорию имеющюю в своём имени пробелы.

Рзмещайте все файлы по стандартному пути, например, «C:\MinGW».

Настройка ярлыков, можно оставить как есть и нажать «Next».

Выбор компонентов для установки.

В данном случае выбраны компилятор С и С++, инструменты для разработки и комплект утилит командной строки — MSYS.

Подтверждение настроек.

Если всё выбрано правильно, жмём «Install».

Начало установки — ожидаем начала загрузки компонентов.

Автоматически запускается консольное окно, в котором отражается весь ход процесса — в данный момент загружаются списки пакетов.

В следующем окне мы можем наблюдать за прогрессом загрузки.

Установка окончена, если вы не хотите читать подробный отчёт о процессе установки, снимите галочку.

Закройте окно установщика — нажмите «Finish».

Проверим, готова ли операционная система для полноценной работы с MinGW. В свойствах компьютера на вкладке «Дополнительно» кликните по кнопке «Переменные среды».

Нам потребуется значение переменной PATH, там должны быть прописаны пути к папкам с исполняемыми файлами MinGW и MSYS, в данном случае это директории «C:\MinGW\bin» и «C:\MinGW\msys\1.0\bin».

Если эти значения не были автоматически добавлены в переменную в процессе установки, допишите их вручную, добавте в начало строку «C:\MinGW\bin;C:\MinGW\msys\1.0\bin;», только без кавычек.

Если в вашей операционной системе отсутствует переменная PATH, то создайте её самостоятельно.

Теперь, когда все инструменты установлены, можно использовать GCC компиляторы в режиме командной строки или настроить их использование в своей IDE.

Лидеры

Лидеры моего внутреннего рейтинга. На основе развития за все годы существования этой заметки.

  • https://wandbox.org/

    • Мой фаворит
    • Плюсы:
      • Самые свежие версии компиляторов (см. ниже) и, соответственно, самые свежие версии стандартов.
      • Gcc/Clang/Zapcc на выбор и много вариантов версий
      • Удобный выбор версий стандарта (C++)
      • Доступен Boost разных версий и дополнительные библиотеки типа Sprout и MessagePack
      • Можно задать дополнительные опции компилятору (“Compiler options”)
      • Уже можно задать опции командной строки для приложения (“Runtime options”)
      • Можно передать программе STDIN
      • Можно создавать дополнительные текстовые файлы (например для программ, читающих из файлов). При этом, можно хитро извернуться и использовать WandBox как IDE: эти файлы могут быть исходниками,
        проосто печислите их в параметрах компилятора 😉
      • Несколько языков
      • Можно шарить код
      • Автоматически сохраняет код между запусками браузера
      • Быстрый запуск по Ctrl+Enter
    • Минусы
  • http://coliru.stacked-crooked.com

    • Плюсы:
      • C++17, можно указать для pre-C++20

      • Последняя версия компилятора

      • Можно выбрать компилятор (по крайней мере gcc 4.6 там есть)

      • Можно задать параметры сборки

      • Автоматически сохраняет код между запусками браузера

      • Можно использовать для шаринга кода (внизу кропка Share)

      • Можно передать параметры программе через аргументы командной строки

      • Можно передать программе STDIN используя трюк Shell:

      • Много шоркатов

    • Минусы:
      • Неудобно выбирать копилятор — только методом перебора 🙂
      • Язык только (?) C/C++
  • http://gcc.godbolt.org/ — тут укажу один минус сразу: он только компилирует, но не выполняет код и отображает ассемблерный листинг, что удобно для анализа всяких оптимизаций.

    • Плюсы:
      • Много разных компиляторов и их версий: gcc (4.4-4.8), arm-gcc (4.5-4.6), avr-gcc (4.5), mps430-gcc (4.5), clang (3.0), icc (13.0.1)
      • Показывает ассемблерный выход
      • Можно задать параметры компиляции
      • Можно шарить код
      • Мегатулза для анализа сгенерированного кода
    • Минусы:

Какие бывают компиляторы?

Ни один компилируемый язык программирования не обходится без компилятора. Некоторые компиляторы работают с несколькими языками программирования. Но программист должен учитывать еще и параметры компьютера, на котором программа будет запускаться.

Дело в том, что современные процессоры отличаются друг от друга устройством, поэтому машинный код для одного процессора будет понятен, а для другого нет. Это касается и операционных систем: одна и та же программа будет работать на Windows, но не запустится на Linux или MacOS. Поэтому нужно пользоваться тем компилятором, который работает с нужным процессором и операционной системой.

Если программа будет работать на нескольких операционных системах, то нужен кросс-компилятор — компилятор, который преобразует универсальный машинный код. Например, GNU Compiler Collection(сокращенно GCC) поддерживает C++, Objective-C, Java, Фортран, Ada, Go и поддерживает разную архитектуру процессоров.

Начинающие программисты даже не знают о наличии компилятора на компьютере. Они пишут программы в интегрированной среде разработки, в которую встроен компилятор, а иногда и не один. В этом случае, выбор компилятора делает среда, а не программист. Например, MS Visual Studio поддерживает компиляторы для операционных систем Windows, Linux, Android. Выбирая тип проекта, Visual Studio определяет процессор и операционную систему компьютера, и после этого выбирает подходящий компилятор.

Создание файла исходного кода на языке C и его компиляция из командной строкиCreate a C source file and compile it on the command line

  1. В окне командной строки разработчика введите команду , чтобы изменить текущий рабочий каталог на корень диска C:.In the developer command prompt window, enter to change the current working directory to the root of your C: drive. Затем введите , чтобы создать каталог, и введите , чтобы перейти к этому каталогу.Next, enter to create a directory, and then enter to change to that directory. В этом каталоге будут находиться исходный файл и скомпилированная программа.This directory will hold your source file and the compiled program.

  2. В командной строке разработчика введите команду .Enter at the developer command prompt. В появившемся диалоговом окне блокнота с оповещением выберите Да , чтобы создать файл simple.c в рабочем каталоге.In the Notepad alert dialog that pops up, choose Yes to create a new simple.c file in your working directory.

  3. В окне блокнота введите следующие строки кода:In Notepad, enter the following lines of code:

  4. В строке меню блокнота выберите команду Файл > Сохранить , чтобы сохранить файл simple.c в рабочем каталоге.On the Notepad menu bar, choose File > Save to save simple.c in your working directory.

  5. Вернитесь к окну командной строки разработчика.Switch back to the developer command prompt window. Введите в командной строке, чтобы получить список содержимого каталога c:\simple.Enter at the command prompt to list the contents of the c:\simple directory. Вы увидите исходный файл simple.c в списке каталогов, который выглядит примерно так:You should see the source file simple.c in the directory listing, which looks something like:

    Даты и некоторые другие данные будут отличаться на вашем компьютере.The dates and other details will differ on your computer. Если вы не видите файл исходного кода simple.c, убедитесь в том, что вы открыли созданный каталог c:\simple и сохранили файл исходного кода в нем в Блокноте.If you don’t see your source code file, simple.c, make sure you’ve changed to the c:\simple directory you created, and in Notepad, make sure that you saved your source file in this directory. Кроме того, убедитесь в том, что исходный код был сохранен с расширением имени файла .c, а не .txt.Also make sure that you saved the source code with a .c file name extension, not a .txt extension.

  6. Чтобы скомпилировать программу, в командной строке разработчика введите .To compile your program, enter at the developer command prompt.

    Имя исполняемой программы (simple.exe) отображается в информации, выводимой компилятором.You can see the executable program name, simple.exe, in the lines of output information that the compiler displays:

    Примечание

    Если вы получаете сообщение об ошибке, например «cl не распознается как внутренняя или внешняя команда, исполняемая программа или пакетный файл», ошибке C1034 или LNK1104, командная строка разработчика настроена неправильно.If you get an error such as «‘cl’ is not recognized as an internal or external command, operable program or batch file,» error C1034, or error LNK1104, your developer command prompt is not set up correctly. Чтобы получить сведения о том, как устранить эту проблему, вернитесь к разделу Открыть командную строку разработчика.For information on how to fix this issue, go back to the Open a developer command prompt section.

    Примечание

    Если вы получаете другое сообщение об ошибке или предупреждение компилятора или компоновщика, проверьте исходный код, исправьте ошибки, сохраните его и снова запустите компилятор.If you get a different compiler or linker error or warning, review your source code to correct any errors, then save it and run the compiler again. Для получения сведений о конкретных ошибках введите номер ошибки в поле поиска вверху этой страницы.For information about specific errors, use the search box at the top of this page to look for the error number.

  7. Чтобы запустить программу, в командной строке введите .To run your program, enter at the command prompt.

    Программа выводит следующий текст и затем закрывается:The program displays this text and then exits:

    Поздравляем! Вы скомпилировали и запустили программу на C с помощью командной строки.Congratulations, you’ve compiled and run a C program by using the command line.

Зачем нужен компилятор?

Процессор — самая важная часть компьютера. Он обрабатывает информацию, выполняет команды пользователя и следит за работой всех подключенных устройств. Но процессор может разобрать только машинный код — набор 0 и 1, которые записаны в определённом порядке.

Почему именно 0 и 1? В процессор поступают электрические сигналы. Сильный сигнал обозначается цифрой 1, а слабый — 0. Набор таких цифр обозначает какую-то команду. Процессор ее распознает и выполняет.

Программы для первых компьютеров выглядели как огромные наборы 0 и 1. Чтобы записать такую программу, инженеры пользовались гибкими картонными карточками — перфокартами. Цифры на перфокарте записывались поочередно, в несколько строк. Чтобы записать 1, программист делал отверстие в карте. Места без отверстия обозначали 0.

Компьютер считывал перфокарту специальным устройством и выполнял записанную команду. Для одной программы составляли сотни перфокарт.

Писать их было долго и сложно, поэтому инженеры стали создавать языки программирования, обозначая команды словами и знаками. Для того, чтобы процессор понимал, какие команды записаны в программе, программисты создали компилятор — программу, которая преобразует программный код в машинный.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Трансляция программы — трансляция всех или только изменённых модулей исходной программы.
  2. компоновка машинно-ориентированной программы.

Структурные реализации компилятора могут быть следующими:

  1. И транслятор, и компоновщик могут целиком входит в состав компилятора как исполняемое программы.
  2. Компилятор сам выполняет лишь трансляцию компилируемой программы, компоновка же программы выполняется вызываемой компилятором отдельной программой-компоновщиком. Практически все современные компиляторы построены по такой схеме.
  3. Пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики.

По первой схеме строились самые первые компиляторы, — для современных компиляторов такая схема построения нехарактерна.

По второй схеме построены все без исключения компиляторы с языков высокого уровня. Любой такой компилятор сам выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Такая схема построения легко позволяет компилятору работать и в режиме транслятора с соответствующего языка программирования. Этот обстоятельство нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, — все современные компиляторы такого типа все же выполняют компоновку, пусть и силами вызываемого компилятором внешнего компоновщика, тогда как транслятор сам никогда не выполняет вызов внешнего компоновщика. Но это же обстоятельство позволяет компилятору с одного языка программирования на фазе компоновки включать в программу написанную на одном языке программирования функции-подпрограммы из уже оттранслированных соответствующим транслятором/компилятором, написанные на ином языке программирования. Так в программу на С/С++ можно вставлять функции написанные например на Pascal или Fortran. Аналогично и напротив написанная на С/С++ функции могут быть вставлены в Pascal- или Fortran-программу соответственно. Это было бы невозможно без поддержки многими современными компиляторами генерации кода вызова процедур (функций) в соответствии с соглашениями иных языков программирования. Например современные компиляторы с языка Pascal помимо организации вызова процедур/функций в стандарте самого Pascal поддерживают организацию вызова процедурой/функцией в соответствии с соглашениями языка С/С++. (Например чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка С/С++, — оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl.)

Наконец по третьей схеме построены компиляторы, представляющие собой целые системы, включающие в себя трансляторы с разных языков программирования и компоновщики. Также любой такой компилятор может использовать в качестве транслятора любой способный работать в режиме транслятора компилятор с конкретного языка высокого уровня. Естественно такой компилятор может компилировать программу, разные части исходного текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов — имеющийся во всех UNIX-системах (в частности в Linux) компилятор make.

Трансляция программы как неотъемлемая составляющая компиляции включает в себя:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в древо разбора.
  3. Семантический анализ. На этой фазе древо разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их объявлениям, типам данных, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным древом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
  5. Генерация кода. Из промежуточного представления порождается код на целевом машинно-ориентированном языке.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен физическим процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой компилируется (собирается) машинно-ориентированная программа, называется целевой машиной.

Результат компиляции — исполнимый программный модуль — обладает максимально возможной производительностью, однако привязан к конкретной операционной системе (семейству или подсемейству ОС) и процессору (семейству процессоров) и не будет работать на других.

Для каждой целевой машины (IBM, Apple, Sun, Эльбрус и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов команд). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. (Пример: PureBasic, транслирующий бейсик-код в ассемблер FASM.) Это делается для упрощения части компилятора, отвечающей за генерацию кода, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции (в том числе ручной оптимизации) программистом.

Генерация байт-кода

Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке двоично-кодовых команд, выполняемых виртуальной машиной. Такой язык называется псевдокодом или байт-кодом. Как правило, он не есть машинный код какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую выполняющие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java и выполняется в Java Virtual Machine, для его прямого исполнения была создана спецификация процессора picoJava. Для платформы .NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения — Common Language Runtime (CLR).

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без перекомляции.

Динамическая компиляция

Основная статья: Динамическая компиляция (англ.)

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

Наиболее популярной разновидностью динамической компиляции является JIT. Другой разновидностью является инкрементальная компиляция.

CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки .NET Framework компилируются заранее.

Установка необходимых инструментов

Как вы, наверное, уже понимаете, для запуска кода нужно установить необходимые инструменты и компиляторы для работы. Ниже мы опишем как установить все инструменты разработки в Linux.

Для работы и тестирования у нас должен быть сервер с Linux. Лучший вариант — это VPS. В зависимости от географии проекта обычно выбирают две страны для серверов — VPS США и VPS России.

В этом кратком руководстве мы обсудим, как установить средства разработки в такие дистрибутивы Linux, как Arch Linux, CentOS, RHEL, Fedora, Debian, Ubuntu, openSUSE и др.

Эти средства разработки включают в себя все необходимые приложения, такие как компиляторы GNU GCC C/C++, make, отладчики, man-страницы и другие, которые необходимы для компиляции и сборки нового программного обеспечения и пакетов.

Инструменты разработчика могут быть установлены как по отдельности, так и все сразу. Мы собираемся установить все сразу, чтобы нам было намного проще работать.

Установка в Arch Linux

Для установки средств разработки в Arch Linux и его дистрибутивов, таких как Antergos, Manjaro Linux, просто запустите:

Вышеуказанная команда установит следующие пакеты в ваши системы на базе Arch:

  1. autoconf
  2. automake
  3. binutils
  4. bison
  5. fakeroot
  6. file
  7. findutils
  8. flex
  9. gawk
  10. gcc
  11. gettext
  12. grep
  13. groff
  14. gzip
  15. libtool
  16. m4
  17. make
  18. pacman
  19. patch
  20. pkg-config
  21. sed
  22. sudo
  23. texinfo
  24. util-linux
  25. which

Просто нажми ENTER, чтобы установить их все.

Если вы хотите установить пакет в определенную группу пакетов, просто введите его номер и нажмите ENTER, чтобы продолжить установку.

Статьи и уроки по тегам

Arduino
Raspberry
Python
C++
Android
PHP
Javascript
VSC
IFTTT
Blynk
Bluetooth
Git
Роботы
Умный дом
Аудио
Датчики
Свет
Моторы

Установка средств разработки в RHEL, CentOS

Для установки средств разработки в Fedora, RHEL и его клонах, таких как CentOS, Scientific Linux, выполните следующие команды как пользователь root:

Вышеуказанная команда установит все необходимые инструменты разработчика, например:

  1. autoconf
  2. automake
  3. bison
  4. byacc
  5. cscope
  6. ctags
  7. diffstat
  8. doxygen
  9. elfutils
  10. flex
  11. gcc/gcc-c++/gcc-gfortran
  12. git
  13. indent
  14. intltool
  15. libtool
  16. patch
  17. patchutils
  18. rcs
  19. subversion
  20. swig

Установка инструментов разработки в Debian, Ubuntu и дистрибутивы

Для установки необходимых инструментов разработчика в системах на базе DEB, запустите:

Эта команда предоставит все необходимые пакеты для настройки среды разработки в Debian, Ubuntu и его дистрибутивов.

  1. binutils
  2. cpp
  3. gcc-5-locales
  4. g++-multilib
  5. g++-5-multilib
  6. gcc-5-doc
  7. gcc-multilib
  8. autoconf
  9. automake
  10. libtool
  11. flex
  12. bison
  13. gdb
  14. gcc-doc
  15. gcc-5-multilib
  16. and many.

Теперь у Вас есть необходимые средства разработки для создания программного обеспечения в Linux.

Скрипт Mangi

Если Вам не нравится метод установки средств разработки выше, есть также скрипт под названием «сценарий манги» (mangi), доступный для легкой настройки среды разработки в DEB-системах, таких как Ubuntu, Linux Mint и других производных Ubuntu.

После свежей установки Ubuntu возьмите этот скрипт из репозитория GitHub, сделайте его исполняемым и начните установку всех необходимых инструментов и пакетов для настройки полной среды разработки. Вам не нужно устанавливать инструменты один за другим.

Этот скрипт установит следующие среды разработки и инструменты на вашу систему Linux:

  1. Node.js
  2. NVM
  3. NPM
  4. Nodemon
  5. MongoDB
  6. Forever
  7. git
  8. grunt
  9. bower
  10. vim
  11. Maven
  12. Loopback
  13. curl
  14. python
  15. jre/jdk
  16. gimp
  17. zip unzip and rar tools
  18. filezilla
  19. tlp
  20. erlang
  21. xpad sticky notes
  22. cpu checker
  23. kvm acceleration
  24. Calibre Ebook Reader (I often use it to read programming books
  25. Dict – Ubuntu Dictionary Database and Client (CLI based)

Сначала установите следующее:

Скачайте скрипт манги, используя команду:

Извлеките загруженный архив:

Вышеуказанная команда распакует zip-файл в папку под названием mangi-script-master в вашей текущей рабочей директории. Перейдите в каталог и сделайте скрипт исполняемым, используя следующие команды:

Наконец, запустите скрипт с помощью команды:

Пожалуйста, имейте в виду, что этот скрипт не полностью автоматизирован. Вам необходимо ответить на ряд вопросов «Да/Нет» для установки всех инструментов разработки.

Установка инструментов разработки в openSUSE/SUSE

Для настройки среды разработки в openSUSE и SUSE enterprise выполните следующие команды от имени root пользователя:

Проверка установки

Теперь проверим, были ли установлены средства разработки или нет. Для этого запустите:

Как видно из приведенного выше вывода, средства разработки были успешно установлены. Теперь можно начать разрабатывать свои приложения.

Виды компиляции

Виды компиляции:

  • Пакетная. Компиляция нескольких исходных модулей в одном задании.
  • Построчная. Машинный код порождается и затем исполняется для каждой завершённой грамматической конструкции языка. Внешне воспринимается как интерпретация, но устройство имеет иное.
  • Условная. На фазе трансляции результат трансляции зависит от условий, прописанных в исходном транслируемом тексте программы директивами компилятора. (Яркий пример — работа препроцессора языка С и производных от него.) Так, в зависимости от значения некой константы некая транслятор заданную часть транслируемого исходного текста программы транслирует или пропускает (игнорирует).

Примечания

  1. ГОСТ 19781-83 // Вычислительная техника. Терминология: Справочное пособие. Выпуск 1 / Рецензент канд. техн. наук Ю. П. Селиванов. — М.: Издательство стандартов, 1989. — 168 с. — 55 000 экз. — ISBN 5-7050-0155-X.; см. также ГОСТ 19781-90
  2. Першиков В. И., Савинков В. М. Толковый словарь по информатике / Рецензенты: канд. физ.-мат. наук А. С. Марков и д-р физ.-мат. наук И. В. Поттосин. — М.: Финансы и статистика, 1991. — 543 с. — 50 000 экз. — ISBN 5-279-00367-0.
  3. ↑ СТ ИСО 2382/7-77 // Вычислительная техника. Терминология. Указ. соч.
  4. Борковский А. Б. Англо-русский словарь по программированию и информатике (с толкованиями). — М.: Русский язык, 1990. — 335 с. — 50 050 (доп,) экз. — ISBN 5-200-01169-3.
  5. Толковый словарь по вычислительным системам = Dictionary of Computing / Под ред. В. Иллингуорта и др.: Пер. с англ. А. К. Белоцкого и др.; Под ред. Е. К. Масловского. — М.: Машиностроение, 1990. — 560 с. — 70 000 (доп,) экз. — ISBN 5-217-00617-X (СССР), ISBN 0-19-853913-4 (Великобритания).
  6. Н. А. Криницкий, Г. А. Миронов, Г. Д. Фролов. Программирование / Под ред. М. Р. Шура-Бура. — М.: Государственное издательство физико-математической литературы, 1963.

Что такое Ideone?

Этот онлайн компилятор предоставляет возможность программисту непосредственно в своём веб-обозревателе запустить код, используя свыше шести десятков языков программирования, причём можно также и версии программ выбирать. Данный сервис всё же уступает другим подобным проектам в выборе возможностей. К тому же имеет вот такие ограничения в использовании:

  • Время на компиляцию ограничено 10 секундами.
  • Пользователям, имеющим регистрацию, даётся 15 секунд для выполнения задачи, а случайно зашедшим на сайт посетителям – всего 5 секунд.
  • Использование оперативной памяти также ограничено 256 МБ.
  • Новые файлы не получится создать при запуске кода, если отсутствует Интернет-соединение.

Исходя из всего этого, можно сделать вывод, что данный компилятор подойдёт больше всего для быстрого теста необширного приложения. Профессионалы выберут скорей всего что-нибудь из описанных выше вариантов.

https://ideone.com/

пример

Различные веб-сайты предоставляют онлайн-доступ к компиляторам C ++. Набор функций онлайн-компилятора значительно варьируется от сайта к сайту, но обычно они позволяют сделать следующее:

  • Вставьте свой код в веб-форму в браузере.
  • Выберите некоторые параметры компилятора и скомпилируйте код.
  • Собирать компилятор и / или выпуск программы.

Онлайн-поведение веб-компилятора обычно является довольно ограничительным, поскольку они позволяют кому-либо запускать компиляторы и выполнять произвольный код на своей стороне сервера, тогда как обычно удаленное выполнение произвольного кода считается уязвимостью.

Компиляторы онлайн могут быть полезны для следующих целей:

  • Запустите небольшой фрагмент кода с компьютера, на котором отсутствует компилятор C ++ (смартфоны, планшеты и т. Д.).
  • Убедитесь, что код успешно компилируется с разными компиляторами и работает одинаково, независимо от компилятора, с которым он был скомпилирован.
  • Изучайте или преподавайте основы C ++.
  • Изучите современные возможности C ++ (C ++ 14 и C ++ 17 в ближайшем будущем), когда современный компилятор C ++ недоступен на локальной машине.
  • Найдите ошибку в своем компиляторе по сравнению с большим набором других компиляторов. Проверьте, исправлена ​​ли ошибка компилятора в будущих версиях, которые недоступны на вашем компьютере.
  • Решите проблемы онлайн-судьи.

Какие онлайн-компиляторы не должны использоваться для:

  • Разработка полнофункциональных (даже небольших) приложений с использованием C ++. Обычно онлайн-компиляторы не позволяют связываться со сторонними библиотеками или загружать артефакты сборки.
  • Выполнять интенсивные вычисления. Ресурсы на стороне Sever ограничены, поэтому любая пользовательская программа будет убита через несколько секунд после ее выполнения. Допустимое время выполнения обычно достаточно для тестирования и обучения.
  • Сам сервер компилятора атаки или сторонние хосты в сети.

Примеры:

  • http://codepad.org/ Онлайн-компилятор с совместным использованием кода. Редактирование кода после компиляции с предупреждением или ошибкой исходного кода работает не так хорошо.
  • http://coliru.stacked-crooked.com/ Онлайн-компилятор, для которого вы указываете командную строку. Предоставляет компиляторы GCC и Clang для использования.
  • http://cpp.sh/ — Онлайн-компилятор с поддержкой C ++ 14. Не позволяет редактировать командную строку компилятора, но некоторые параметры доступны через элементы управления графическим интерфейсом.
  • https://gcc.godbolt.org/ — Предоставляет широкий список версий, архитектуры и разборки компилятора. Очень полезно, когда вам нужно проверить, что ваш код компилируется разными компиляторами. GCC, Clang, MSVC ( ), компилятор Intel ( ), ELLCC и Zapcc, причем один или несколько из этих компиляторов доступны для ARM, ARMv8 (как ARM64), Atmel AVR, MIPS, MIPS64, MSP430, PowerPC , x86 и x64 architecutres. Аргументы командной строки компилятора могут быть отредактированы.
  • https://ideone.com/ — Широко используется в сети для иллюстрации поведения фрагмента кода. Предоставляет GCC и Clang для использования, но не позволяет редактировать командную строку компилятора.
  • http://melpon.org/wandbox — Поддерживает многочисленные версии компилятора Clang и GNU / GCC.
  • http://onlinegdb.com/ — крайне минималистичная среда разработки, включающая редактор, компилятор (gcc) и отладчик (gdb).
  • http://rextester.com/ — Предоставляет компиляторы Clang, GCC и Visual Studio для C и C ++ (наряду с компиляторами для других языков), с доступной для использования библиотекой Boost.
  • http://tutorialspoint.com/compile_cpp11_online.php — полнофункциональная оболочка UNIX с GCC и удобный для пользователя проект.
  • http://webcompiler.cloudapp.net/ — Компилятор Online Visual Studio 2015, предоставленный Microsoft в составе RiSE4fun.

Previous
Next

Бабочки

Такие красивые и объемные бабочки могут выступать самостоятельным украшением любого интерьера. Такая гирлянда будет отлично смотреться на стене или окне.

Вам потребуется:

  • Бумага любого цвета;
  • Степлер;
  • Ножницы.

Теперь нужно скрутить полоску и постараться ее «застегнуть» степлером посередине.

Затем согните листочек, и ножницами вырежьте крылышки. Форма их может быть самой разной.

Поработайте с крылышками, постарайтесь сделать фигурку таким образом, чтобы она была максимально похожа на оригинал.

Сделайте 15-20 бабочек разных цветов и наденьте их на нитку. Гирлянда готова.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector