Массивы (матрицы) в python
Содержание:
- Python Tutorial
- Транспонирование и изменение формы матриц в numpy
- Implementing MergeSort and QuickSort
- Создание массива в NumPy
- Python Tutorial
- Примеры работы с NumPy
- Аудио и временные ряды в NumPy
- Срезы
- Двумерный массив
- Добавление нового массива
- Многомерный массив
- Перестройка массива
- Работа с массивами с изменяемым размером в python
- Базовые операции
- Операции на массиве
- Массив нарезки
- Python NumPy
- Ways to Print an Array in Python
- Использование sorted() для итерируемых объектов Python
- Как создаются матрицы в Python?
Python Tutorial
Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython Variables
Python Variables
Variable Names
Assign Multiple Values
Output Variables
Global Variables
Variable Exercises
Python Data TypesPython NumbersPython CastingPython Strings
Python Strings
Slicing Strings
Modify Strings
Concatenate Strings
Format Strings
Escape Characters
String Methods
String Exercises
Python BooleansPython OperatorsPython Lists
Python Lists
Access List Items
Change List Items
Add List Items
Remove List Items
Loop Lists
List Comprehension
Sort Lists
Copy Lists
Join Lists
List Methods
List Exercises
Python Tuples
Python Tuples
Access Tuples
Update Tuples
Unpack Tuples
Loop Tuples
Join Tuples
Tuple Methods
Tuple Exercises
Python Sets
Python Sets
Access Set Items
Add Set Items
Remove Set Items
Loop Sets
Join Sets
Set Methods
Set Exercises
Python Dictionaries
Python Dictionaries
Access Items
Change Items
Add Items
Remove Items
Loop Dictionaries
Copy Dictionaries
Nested Dictionaries
Dictionary Methods
Dictionary Exercise
Python If…ElsePython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython Classes/ObjectsPython InheritancePython IteratorsPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try…ExceptPython User InputPython String Formatting
Транспонирование и изменение формы матриц в numpy
Нередки случаи, когда нужно повернуть матрицу. Это может потребоваться при вычислении скалярного произведения двух матриц. Тогда возникает необходимость наличия совпадающих размерностей. У массивов NumPy есть полезное свойство под названием , что отвечает за транспонирование матрицы.
Некоторые более сложные ситуации требуют возможности переключения между размерностями рассматриваемой матрицы. Это типично для приложений с машинным обучением, где некая модель может запросить определенную форму вывода, которая является отличной от формы начального набора данных. В таких ситуациях пригодится метод из NumPy. Здесь от вас требуется только передать новые размерности для матрицы. Для размерности вы можете передать , и NumPy выведет ее верное значение, опираясь на данные рассматриваемой матрицы:
Еще больше размерностей NumPy
NumPy может произвести все вышеперечисленные операции для любого количества размерностей. Структура данных, расположенных центрально, называется , или n-мерным массивом.
В большинстве случаев для указания новой размерности требуется просто добавить запятую к параметрам функции NumPy:
Shell
array(,
,
],
,
,
],
,
,
],
,
,
]])
1 |
array(1.,1., 1.,1., 1.,1., 1.,1., 1.,1., 1.,1., 1.,1., 1.,1., 1.,1., 1.,1., 1.,1., 1.,1.) |
Implementing MergeSort and QuickSort
Here, we investigate two other commonly used Sorting techniques used in actual practice, namely the MergeSort and the QuickSort algorithms.
1. MergeSort Algorithm
The algorithm uses a bottom-up Divide and Conquer approach, first dividing the original array into subarrays and then merging the individually sorted subarrays to yield the final sorted array.
In the below code snippet, the method does the actual splitting into subarrays and the perform_merge() method merges two previously sorted arrays into a new sorted array.
import array def mergesort(a, arr_type): def perform_merge(a, arr_type, start, mid, end): # Merges two previously sorted arrays # a and a tmp = array.array(arr_type, ) def compare(tmp, i, j): if tmp <= tmp: i += 1 return tmp else: j += 1 return tmp i = start j = mid + 1 curr = start while i<=mid or j<=end: if i<=mid and j<=end: if tmp <= tmp: a = tmp i += 1 else: a = tmp j += 1 elif i==mid+1 and j<=end: a = tmp j += 1 elif j == end+1 and i<=mid: a = tmp i += 1 elif i > mid and j > end: break curr += 1 def mergesort_helper(a, arr_type, start, end): # Divides the array into two parts # recursively and merges the subarrays # in a bottom up fashion, sorting them # via Divide and Conquer if start < end: mergesort_helper(a, arr_type, start, (end + start)//2) mergesort_helper(a, arr_type, (end + start)//2 + 1, end) perform_merge(a, arr_type, start, (start + end)//2, end) # Sorts the array using mergesort_helper mergesort_helper(a, arr_type, 0, len(a)-1)
Test Case:
a = array.array('i', ) print('Before MergeSort ->', a) mergesort(a, 'i') print('After MergeSort ->', a)
Output:
Before MergeSort -> array('i', ) After MergeSort -> array('i', )
2. QuickSort Algorithm
This algorithm also uses a Divide and Conquer strategy, but uses a top-down approach instead, first partitioning the array around a pivot element (here, we always choose the last element of the array to be the pivot).
Thus ensuring that after every step, the pivot is at its designated position in the final sorted array.
After ensuring that the array is partitioned around the pivot (Elements lesser than the pivot are to the left, and the elements which are greater than the pivot are to the right), we continue applying the function to the rest of the array, until all the elements are at their respective position, which is when the array is completely sorted.
Note: There are other approaches to this algorithm for choosing the pivot element. Some variants choose the median element as the pivot, while others make use of a random selection strategy for the pivot.
def quicksort(a, arr_type): def do_partition(a, arr_type, start, end): # Performs the partitioning of the subarray a # We choose the last element as the pivot pivot_idx = end pivot = a # Keep an index for the first partition # subarray (elements lesser than the pivot element) idx = start - 1 def increment_and_swap(j): nonlocal idx idx += 1 a, a = a, a < pivot] # Finally, we need to swap the pivot (a with a) # since we have reached the position of the pivot in the actual # sorted array a, a = a, a # Return the final updated position of the pivot # after partitioning return idx+1 def quicksort_helper(a, arr_type, start, end): if start < end: # Do the partitioning first and then go via # a top down divide and conquer, as opposed # to the bottom up mergesort pivot_idx = do_partition(a, arr_type, start, end) quicksort_helper(a, arr_type, start, pivot_idx-1) quicksort_helper(a, arr_type, pivot_idx+1, end) quicksort_helper(a, arr_type, 0, len(a)-1)
Here, the method does the step of the Divide and Conquer approach, while the method partitions the array around the pivot and returns the position of the pivot, around which we continue to recursively partition the subarray before and after the pivot until the entire array is sorted.
Test Case:
b = array.array('i', ) print('Before QuickSort ->', b) quicksort(b, 'i') print('After QuickSort ->', b)
Output:
Before QuickSort -> array('i', ) After QuickSort -> array('i', )
Создание массива в NumPy
Для создания и модификации массивов в «Питоне» используется библиотека NumPy.
Она поддерживает многомерный массив и матрицы, обладает большим набором пакетов для решения математических задач. А также обеспечивает работу с однородными многомерными массивами и матрицами. Чтобы получить возможность пользоваться функциями этого пакета, его необходимо импортировать.
import numpy as np
Один из наиболее простых способов, как задать массив в «Питоне» — воспользоваться функцией array(). Она создает объект типа ndarray.
array = np.array(/* множество элементов */)
Теперь array обладает типом ndarray. Это можно проверить функцией array.type(). Она приняла в качестве аргумента имя созданного массива. Вернется ответ — <class ‘numpy.ndarray’>.
Чтобы переопределить тип, нужно использовать dtype=np.complex на этапе создания.
array2 = np.array([ /*элементы*/, dtype=np.complex)
Если нужно задать массив, но его элементы на этом этапе неизвестны, он заполняется нулями функцией zeros(). Можно создать массив из единиц функцией ones(). В качестве аргументов принимается количество вложенных массивов и количество элементов внутри.
np.zeros(2, 2, 2)
Создаст два массива внутри, которые содержат по 2 элемента.
- array([
- ]
- ]]
- )
Чтобы вывести массив на экран, используется функция print(). Если массив слишком большой для печати, NumPy скрывает центральную часть и выводит только крайние значения.
Чтобы увидеть весь массив, применяется функция set_printoptions(). По умолчанию выводятся только первые 1000 элементов. Это значение указывается как аргумент с ключевым словом threshold.
Python Tutorial
Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython Variables
Python Variables
Variable Names
Assign Multiple Values
Output Variables
Global Variables
Variable Exercises
Python Data TypesPython NumbersPython CastingPython Strings
Python Strings
Slicing Strings
Modify Strings
Concatenate Strings
Format Strings
Escape Characters
String Methods
String Exercises
Python BooleansPython OperatorsPython Lists
Python Lists
Access List Items
Change List Items
Add List Items
Remove List Items
Loop Lists
List Comprehension
Sort Lists
Copy Lists
Join Lists
List Methods
List Exercises
Python Tuples
Python Tuples
Access Tuples
Update Tuples
Unpack Tuples
Loop Tuples
Join Tuples
Tuple Methods
Tuple Exercises
Python Sets
Python Sets
Access Set Items
Add Set Items
Remove Set Items
Loop Sets
Join Sets
Set Methods
Set Exercises
Python Dictionaries
Python Dictionaries
Access Items
Change Items
Add Items
Remove Items
Loop Dictionaries
Copy Dictionaries
Nested Dictionaries
Dictionary Methods
Dictionary Exercise
Python If…ElsePython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython Classes/ObjectsPython InheritancePython IteratorsPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try…ExceptPython User InputPython String Formatting
Примеры работы с NumPy
Подытожим все вышесказанное. Вот несколько примеров полезных инструментов NumPy, которые могут значительно облегчить процесс написания кода.
Математические формулы NumPy
Необходимость внедрения математических формул, которые будут работать с матрицами и векторами, является главной причиной использования NumPy. Именно поэтому NumPy пользуется большой популярностью среди представителей науки. В качестве примера рассмотрим формулу , которая является центральной для контролируемых моделей машинного обучения, что решают проблемы регрессии:
Реализовать данную формулу в NumPy довольно легко:
Главное достоинство NumPy в том, что его не заботит, если и содержат одно или тысячи значение (до тех пор, пока они оба одного размера). Рассмотрим пример, последовательно изучив четыре операции в следующей строке кода:
У обоих векторов и по три значения. Это значит, что в данном случае равно трем. После выполнения указанного выше вычитания мы получим значения, которые будут выглядеть следующим образом:
Затем мы можем возвести значения вектора в квадрат:
Теперь мы вычисляем эти значения:
Таким образом мы получаем значение ошибки некого прогноза и за качество модели.
Представление данных NumPy
Задумайтесь о всех тех типах данных, которыми вам понадобится оперировать, создавая различные модели работы (электронные таблицы, изображения, аудио и так далее). Очень многие типы могут быть представлены как n-мерные массивы:
Аудио и временные ряды в NumPy
По сути аудио файл — это одномерный массив семплов. Каждый семпл представляет собой число, которое является крошечным фрагментов аудио сигнала. Аудио CD-качества может содержать 44 100 семплов в секунду, каждый из которых является целым числом в промежутке между -32767 и 32768. Это значит, что десятисекундный WAVE-файл CD-качества можно поместить в массив NumPy длиной в 10 * 44 100 = 441 000 семплов.
Хотите извлечь первую секунду аудио? Просто загрузите файл в массив NumPy под названием , после чего получите .
Фрагмент аудио файла выглядит следующим образом:
То же самое касается данных временных рядов, например, изменения стоимости акций со временем.
Срезы
Часто приходится работать не с целым массивом, а только с некоторыми его элементами. Для этих целей в «Пайтоне» существует метод «Срез» (слайс). Он пришел на замену перебору элементов циклом for.
Метод открывает широкие возможности для получения копии массива в «Питоне». Все манипуляции осуществляются в таком виде . Здесь значение start обозначает индекс элемента, от которого начинается отсчет, значение stop — последний элемент, размер шага — количество пропускаемых элементов при каждой итерации. По умолчанию start равняется нулю, то есть отсчет начинается от нулевого элемента списка, stop равняется индексу последнего элемента в списке, шаг — равен единице, то есть перебирает каждый поочередно. Если передать в функцию без аргументов, список копируется полностью от начала до конца.
Например, у нас есть массив:
mas =
Чтобы его скопировать, используем mas. Функция вернет последовательность элементов . Если аргументом будет отрицательное значение, например -3, функция вернет элементы с индексами от третьего до последнего.
mas; //
После двойного двоеточия указывается шаг элементов, копируемых в массиве. Например, mas вернет массив . Если указано отрицательное значение, например, отсчет будет начинаться с конца, и получим .
Методом среза можно гибко работать с вложенными списками. Для двумерного массива в «Питоне» означает, что вернется каждый третий элемент всех массивов. Если указать — вернутся первые два.
Двумерный массив
В некоторых случаях для правильного представления определенного набора информации обычного одномерного массива оказывается недостаточно. В языке программирования Python 3 двумерных и многомерных массивов не существует, однако базовые возможности этой платформы легко позволяют построить двумерный список. Элементы подобной конструкции располагаются в столбцах и строках, заполняемых как это показано на следующем примере.
d1 = [] for j in range(5): d2 = [] for i in range(5): d2.append(0) d1.append(d2)
Здесь можно увидеть, что основная идея реализации двумерного набора данных заключается в создании нескольких списков d2 внутри одного большого списка d1. При помощи двух циклов for происходит автоматическое заполнение нулями матрицы с размерностью 5×5. С этой задачей помогают справляться методы append и range, первый из которых добавляет новый элемент в список (0), а второй позволяет устанавливать его величину (5). Нельзя не отметить, что для каждого нового цикла for используется собственная временная переменная, выполняющая представление текущего элемента внешнего (j) или внутренних (i) списков. Обратиться к нужной ячейке многомерного списка можно при помощи указания ее координат в квадратных скобках, ориентируясь на строки и столбцы: d1.
Добавление нового массива
Перед процессом создание нового массива, необходимо выполнить некоторые действия. Для начала, стоит произвести импорт библиотеки, которая отвечает за работу с подобными объектами. Чтобы выполнить это действие, нужно добавить в файл программы следующую строку: from array import *.
Исходя из того, что массивы предназначены для работы с одним типом данных, то и, соответственно, размер ячеек этих данных также будет одинаков.
Для создания нового массива данных используется такая функция, как «array». Ниже представлен пример того, как заполняется массив с помощью перечисленных действий:
from array import *data = array(‘i’, )
Функция «array» способна принимать два аргумента, одним из них является вид массива, который создается, другим – исходный перечень значений массива. В этом примере i является числом, размер которого составляет 2 б. Стоит отметить, что можно использовать не только этот примитив, но и другие – c, f и т. д.
Действия для добавления нового элемента
Для того, чтобы в массиве появился новый элемент, необходимо воспользоваться таким методом, как «insert». Это делается с помощью ввода в созданный ранее объект двух значений, являющихся аргументами. Цифра 3 представляет собой не что иное, как само значение, а 4 указывает на место в массиве, где будет располагаться элемент, т. е. его индекс.
Действия для удаления нового элемента
В рассматриваемом языке программирования избавиться от лишних элементов можно посредством такого метода, как «pop». Данный метод имеет аргумент (3) и может быть вызван через объект, который создавался ранее, т. е. способом, аналогичным добавлению нового элемента.
data.pop(3)
После того, как произошло удаление лишнего, в массиве происходит сдвиг его содержимого таким образом, чтобы число свободных ячеек памяти совпало с текущим количеством элементов.
Проверка
Зачастую возникает необходимость проверки данных при работе с любой программой, которая проводится путем вывода на экран. Эта операция может быть совершена с помощью такой команды, как «print». Аргументом для этой функции является элемент массива, созданного ранее.
В нижеприведенном примере видно, что обработка массива происходит с помощью цикла «for», в котором любой элемент массива идентификатором i для передачи в «print».
Многомерный массив
Как и в случае с двумерным массивом, представленным в виде сложного списка, многомерный массив реализуется по принципу «списков внутри списка». Следующий пример наглядно демонстрирует создание трехмерного списка, который заполняется нулевыми элементами при помощи трех циклов for. Таким образом, программа создает матрицу с размерностью 5×5×5.
d1 = [] for k in range(5): d2 = [] for j in range(5): d3 = [] for i in range(5): d3.append(0) d2.append(d3) d1.append(d3)
Аналогично двумерному массиву, обратиться к ячейке построенного выше объекта можно с помощью индексов в квадратных скобках, например, d1.
Перестройка массива
После нарезки данных вам может понадобиться изменить их.
Например, некоторые библиотеки, такие как scikit-learn, могут требовать, чтобы одномерный массив выходных переменных (y) был сформирован как двумерный массив с одним столбцом и результатами для каждого столбца.
Некоторые алгоритмы, такие как рекуррентная нейронная сеть с короткой кратковременной памятью в Keras, требуют ввода данных в виде трехмерного массива, состоящего из выборок, временных шагов и функций.
Важно знать, как изменить ваши массивы NumPy, чтобы ваши данные соответствовали ожиданиям конкретных библиотек Python. Мы рассмотрим эти два примера
Форма данных
Массивы NumPy имеют атрибут shape, который возвращает кортеж длины каждого измерения массива.
Например:
При выполнении примера печатается кортеж для одного измерения.
Кортеж с двумя длинами возвращается для двумерного массива.
Выполнение примера возвращает кортеж с количеством строк и столбцов.
Вы можете использовать размер измерений вашего массива в измерении формы, например, указав параметры.
К элементам кортежа можно обращаться точно так же, как к массиву, с 0-м индексом для числа строк и 1-м индексом для количества столбцов. Например:
Запуск примера позволяет получить доступ к конкретному размеру каждого измерения.
Изменить форму 1D в 2D Array
Обычно требуется преобразовать одномерный массив в двумерный массив с одним столбцом и несколькими массивами.
NumPy предоставляет функцию reshape () для объекта массива NumPy, который можно использовать для изменения формы данных.
Функция reshape () принимает единственный аргумент, который задает новую форму массива. В случае преобразования одномерного массива в двумерный массив с одним столбцом кортеж будет иметь форму массива в качестве первого измерения (data.shape ) и 1 для второго измерения.
Собрав все это вместе, мы получим следующий проработанный пример.
При выполнении примера печатается форма одномерного массива, изменяется массив, чтобы иметь 5 строк с 1 столбцом, а затем печатается эта новая форма.
Изменить форму 2D в 3D Array
Обычно требуется преобразовать двумерные данные, где каждая строка представляет последовательность в трехмерный массив для алгоритмов, которые ожидают множество выборок за один или несколько временных шагов и одну или несколько функций.
Хорошим примером являетсямодель в библиотеке глубокого обучения Keras.
Функция изменения формы может использоваться напрямую, указывая новую размерность. Это ясно с примером, где каждая последовательность имеет несколько временных шагов с одним наблюдением (функцией) на каждый временной шаг.
Мы можем использовать размеры в атрибуте shape в массиве, чтобы указать количество выборок (строк) и столбцов (временных шагов) и зафиксировать количество объектов в 1
Собрав все это вместе, мы получим следующий проработанный пример.
При выполнении примера сначала печатается размер каждого измерения в двумерном массиве, изменяется форма массива, а затем суммируется форма нового трехмерного массива.
Работа с массивами с изменяемым размером в python
Как правило в программах Python размер массива не четко задан, может вводиться с клавиатуры, может изменяться и размер массива, элементы могут добавляться и удаляться.
Для работы с массивами изменяемого размера в Python используется специальное объявление массива Объявление массива с неизвестным числом элементов в pythonИмя массива=[]Задание массива явноИмя массива=Вывод всего массива в pythonprint(имя массива)
Напримерa=[]
a=
print(a)
Добавление элемента в конец массива вpythonИмя массива.append(значение)
Напримерa=[]
a=
print(a)
a.append(7)
print(a)
будет выведено на экран
Ввод массива с клавиатуры в python
Для ввода массива с неизвестным числом элементов в python в программе запрашивается чилсо элементов, а затем в цикле for добавляется элементы с помощью команды имямассива.append()a=[]
n=int(input())
for i in range(n):
a.append(int(input()))
print(a)Для определения длины массива в python используется команда len(имя массива)Вывод поэлементно массива на экран в Python
Вывод массива неизвестной длины осуществляется в цикле for, верхняя граница цикла определятся с помощью команды len(имя массива)for i in range(len(a)):
print(a)Для удаления элемента массива в python используется командаИмя массива.remove(номер элемента который нужно удалить)
Напримерa=[]
a=
print(a)
a.remove(1)
print(a)
выведет на экран
Сортировка массива в python
Для сортировки числового массива по возрастанию в python используется командаимя массива.sort()
Пример программы на Python ввода массива, вывода массива и сортировки массиваa=[]
n=int(input())
for i in range(n):
a.append(int(input()))
print(‘массив’)
for i in range(len(a)):
print(a)
a.sort()
print(‘отсортированный массив’)
for i in range(len(a)):
print(a)
Вернуться к содержанию Следующая тема Работа с модулями в Питон
Полезно почитать по теме массивы в python:Матрицы в pyhtonРабота с матрицами в python в библиотеке numpy
Базовые операции
Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.
>>> import numpy as np >>> a = np.array() >>> b = np.arange(4) >>> a + b array() >>> a - b array() >>> a * b array() >>> a b # При делении на 0 возвращается inf (бесконечность) array() <string>:1: RuntimeWarning: divide by zero encountered in true_divide >>> a ** b array() >>> a % b # При взятии остатка от деления на 0 возвращается 0 <string>:1: RuntimeWarning: divide by zero encountered in remainder array()
Для этого, естественно, массивы должны быть одинаковых размеров.
>>> c = np.array(, 4, 5, 6]]) >>> d = np.array(, 3, 4], 5, 6]]) >>> c + d Traceback (most recent call last): File "<input>", line 1, in <module> ValueError: operands could not be broadcast together with shapes (2,3) (3,2)
Также можно производить математические операции между массивом и числом. В этом случае к каждому элементу прибавляется (или что вы там делаете) это число.
>>> a + 1 array() >>> a ** 3 array() >>> a < 35 # И фильтрацию можно проводить array(, dtype=bool)
NumPy также предоставляет множество математических операций для обработки массивов:
>>> np.cos(a) array() >>> np.arctan(a) array() >>> np.sinh(a) array()
Полный список можно посмотреть здесь.
Многие унарные операции, такие как, например, вычисление суммы всех элементов массива, представлены также и в виде методов класса ndarray.
>>> a = np.array(, 4, 5, 6]]) >>> np.sum(a) 21 >>> a.sum() 21 >>> a.min() 1 >>> a.max() 6
По умолчанию, эти операции применяются к массиву, как если бы он был списком чисел, независимо от его формы. Однако, указав параметр axis, можно применить операцию для указанной оси массива:
Операции на массиве
Еще ряд полезных операций с массивами:
(на всякий случай повторю, чтобы было легче найти) — элемент массива с номером .
(на всякий случай повторю, чтобы было легче найти) — длина массива.
— приписывает к массиву новый элемент со значением , в результате длина массива становится на 1 больше. Конечно, вместо x может быть любое арифметическое выражение.
— симметричная операция, удаляет последний элемент из массива. Длина массива становится на 1 меньше. Если нужно запомнить значение удаленного элемента, надо просто сохранить результат вызова в новую переменную: .
— это массив, полученный приписыванием массива самого к себе три раза. Например, — это . Конечно, на месте тройки тут может быть любое арифметическое выражение. Самое частое применение этой конструкции — если вам нужен массив длины , заполненный, например, нулями, то вы пишете .
— присваивание массивов. Теперь в записан тот же массив, что и в . Тот же — в прямом смысле слова: теперь и , и соответствуют одному и тому же массиву, и изменения в отразятся в и наоборот
Еще раз, потому что это очень важно. Присваивание массивов (и вообще любых сложных объектов) в питоне не копирует массив, а просто обе переменные начинают ссылаться на один и тот же массив, и изменения массива через любую из них меняет один и тот же массив
При этом на самом деле тут есть многие тонкости, просто будьте готовы к неожиданностям.
(«срез») — делает новый массив, состоящий из элементов старого массива начиная со первого (помните про нумерацию с нуля!) и заканчивая третьим (т.е. до четвертого, но не включительно, аналогично тому, как работает ); этот массив сохраняется в . Для примера выше получится . Конечно, на месте 1 и 4 может быть любое арифметическое выражение. Более того, эти индексы можно вообще не писать, при этом автоматически подразумевается начало и конец массива. Например, — это первые три элемента массива (нулевой, первый и второй), — все элементы кроме нулевого, — все элементы кроме последнего (!), а — это копия всего массива. И это именно копия, т.е. запись именно копирует массив, получающиеся массивы никак не связаны, и изменения в не влияют на (в отличие от ).
Массив нарезки
Все идет нормально; Создание и индексация массивов выглядит знакомо.
Теперь мы подошли к нарезке массивов, и это одна из функций, которая создает проблемы для начинающих массивов Python и NumPy.
Структуры, такие как списки и массивы NumPy, могут быть нарезаны. Это означает, что подпоследовательность структуры может быть проиндексирована и извлечена.
Это наиболее полезно при машинном обучении при указании входных и выходных переменных или разделении обучающих строк из строк тестирования.
Нарезка задается с помощью оператора двоеточия ‘:’ с ‘от’ а также ‘в‘Индекс до и после столбца соответственно. Срез начинается от индекса «от» и заканчивается на один элемент перед индексом «до».
Давайте рассмотрим несколько примеров.
Одномерная нарезка
Вы можете получить доступ ко всем данным в измерении массива, указав срез «:» без индексов.
При выполнении примера печатаются все элементы в массиве.
Первый элемент массива можно разрезать, указав фрагмент, который начинается с индекса 0 и заканчивается индексом 1 (один элемент перед индексом «до»)
Выполнение примера возвращает подмассив с первым элементом.
Мы также можем использовать отрицательные индексы в срезах. Например, мы можем нарезать последние два элемента в списке, начав срез с -2 (второй последний элемент) и не указав индекс «до»; это берет ломтик до конца измерения.
Выполнение примера возвращает подмассив только с двумя последними элементами.
Двумерная нарезка
Давайте рассмотрим два примера двумерного среза, которые вы, скорее всего, будете использовать в машинном обучении.
Разделение функций ввода и вывода
Распространено загруженные данные на входные переменные (X) и выходную переменную (y).
Мы можем сделать это, разрезая все строки и все столбцы до, но перед последним столбцом, затем отдельно индексируя последний столбец.
Для входных объектов мы можем выбрать все строки и все столбцы, кроме последнего, указав ‘:’ в индексе строк и: -1 в индексе столбцов.
Для выходного столбца мы можем снова выбрать все строки, используя ‘:’, и индексировать только последний столбец, указав индекс -1.
Собрав все это вместе, мы можем разделить 3-колоночный 2D-набор данных на входные и выходные данные следующим образом:
При выполнении примера печатаются разделенные элементы X и y
Обратите внимание, что X — это двумерный массив, а y — это одномерный массив
Сплит поезд и тестовые ряды
Обычно загруженный набор данных разбивают на отдельные наборы поездов и тестов.
Это разделение строк, где некоторая часть будет использоваться для обучения модели, а оставшаяся часть будет использоваться для оценки мастерства обученной модели.
Для этого потребуется разрезать все столбцы, указав «:» во втором индексе измерения. Набор обучающих данных будет содержать все строки от начала до точки разделения.
Тестовым набором данных будут все строки, начиная с точки разделения до конца измерения.
Собрав все это вместе, мы можем разделить набор данных в надуманной точке разделения 2.
При выполнении примера выбираются первые две строки для обучения и последняя строка для набора тестов.
Python NumPy
NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random
Random Intro
Data Distribution
Random Permutation
Seaborn Module
Normal Distribution
Binomial Distribution
Poisson Distribution
Uniform Distribution
Logistic Distribution
Multinomial Distribution
Exponential Distribution
Chi Square Distribution
Rayleigh Distribution
Pareto Distribution
Zipf Distribution
NumPy ufunc
ufunc Intro
ufunc Create Function
ufunc Simple Arithmetic
ufunc Rounding Decimals
ufunc Logs
ufunc Summations
ufunc Products
ufunc Differences
ufunc Finding LCM
ufunc Finding GCD
ufunc Trigonometric
ufunc Hyperbolic
ufunc Set Operations
Ways to Print an Array in Python
Now, let us look at some of the ways to print both 1D as well as 2D arrays in Python. Note: these arrays are going to be implemented using lists.
Directly printing using the print() method
We can directly pass the name of the array(list) containing the values to be printed to the method in Python to print the same.
But in this case, the array is printed in the form of a list i.e. with brackets and values separated by commas.
arr = arr_2d = ,] print("The Array is: ", arr) #printing the array print("The 2D-Array is: ", arr_2d) #printing the 2D-Array
Output:
The Array is: The 2D-Array is: , ]
Here, is a one-dimensional array. Whereas, is a two-dimensional one. We directly pass their respective names to the method to print them in the form of a list and list of lists respectively.
Using for loops in Python
We can also print an array in Python by traversing through all the respective elements using loops.
Let us see how.
arr = arr_2d = ,] #printing the array print("The Array is : ") for i in arr: print(i, end = ' ') #printing the 2D-Array print("\nThe 2D-Array is:") for i in arr_2d: for j in i: print(j, end=" ") print()
Output:
The Array is : 2 4 5 7 9 The 2D-Array is: 1 2 3 4
In the code above we traverse through the elements of a 1D as well as a 2D Array using for loops and print the corresponding elements in our desired form.
Использование sorted() для итерируемых объектов Python
Python использует несколько чрезвычайно эффективных алгоритмов сортировки. Например, метод использует алгоритм под названием Timsort (который представляет собой комбинацию сортировки вставкой и сортировки слиянием) для выполнения высокооптимизированной сортировки.
С помощью этого метода можно отсортировать любой итерируемый объект Python, например список или массив.
import array # Declare a list type object list_object = # Declare an integer array object array_object = array.array('i', ) print('Sorted list ->', sorted(list_object)) print('Sorted array ->', sorted(array_object))
Вывод:
Sorted list -> Sorted array ->
Как создаются матрицы в Python?
Добавление и модификация массивов или матриц (matrix) в Python осуществляется с помощью библиотеки NumPy. Вы можете создать таким образом и одномерный, и двумерный, и многомерный массив. Библиотека обладает широким набором пакетов, которые необходимы, чтобы успешно решать различные математические задачи. Она не только поддерживает создание двумерных и многомерных массивов, но обеспечивает работу однородных многомерных матриц.
Чтобы получить доступ и начать использовать функции данного пакета, его импортируют:
import numpy as np
Функция array() — один из самых простых способов, позволяющих динамически задать одно- и двумерный массив в Python. Она создаёт объект типа ndarray:
array = np.array(/* множество элементов */)
Для проверки используется функция array.type() — принимает в качестве аргумента имя массива, который был создан.
Если хотите сделать переопределение типа массива, используйте на стадии создания dtype=np.complex:
array2 = np.array([ /*элементы*/, dtype=np.complex)
Когда стоит задача задать одномерный или двумерный массив определённой длины в Python, и его значения на данном этапе неизвестны, происходит его заполнение нулями функцией zeros(). Кроме того, можно получить матрицу из единиц через функцию ones(). При этом в качестве аргументов принимают число элементов и число вложенных массивов внутри:
np.zeros(2, 2, 2)
К примеру, так в Python происходит задание двух массивов внутри, которые по длине имеют два элемента:
array(] ]] )
Если хотите вывести одно- либо двумерный массив на экран, вам поможет функция print(). Учтите, что если матрица слишком велика для печати, NumPy скроет центральную часть и выведет лишь крайние значения. Дабы увидеть массив полностью, используется функция set_printoptions(). При этом по умолчанию выводятся не все элементы, а происходит вывод только первой тысячи. И это значение массива указывается в качестве аргумента с ключевым словом threshold.