Округление в python
Содержание:
- Ошибки плавающей запятой
- Варианты округления 0,5 к ближайшему целому
- 1 Округление вещественных чисел
- Обозначения
- Как проверить, активирована ли Windows 10?
- Использование округлений при работе с числами ограниченной точности
- Округление при работе с числами ограниченной точности
- Округление
- RemarksRemarks
- Неточные вычисления
- Комментарии
- Floor(Double)
- 3 Потеря точности при работе с вещественными числами
- ПримерыExamples
- Примечания
- АргументыArguments
- Итого
Ошибки плавающей запятой
Дробные величины компьютер обычно трактует как числа с плавающей точкой. Аксессовские поля типов Двойной точности (Double) или Одинарной точности (Single) относятся к такому типу. Тип «Двойной точности» дает около 15 знаков точности, сингл — 8 знаков (подобно ручному калькулятору).
Но эти числа являются приблизительными. Точно так же, как 1/3 требует бесконечного количества знаков в десятичной системе, большинство чисел с плавающей запятой не могут быть представлены точно в двоичной системе. Википедия объясняет , с которой вы сталкиваетесь, оперируя числами с плавающей запятой.
Резюме заключается в том, что крайние цифры могут не округлиться ожидаемым вами образом,благодаря тому факту, что действительные значения и отображаемые не совпадают. Это становится особенно заметно при проверке банковского округления.
Один из способов избежать подобных проблем — использовать числа с фиксированной запятой или мастшабированные числа.Тип данных «Денежный» в Аксессе является типом с фиксированной запятой: он всегда хранит 4 десятичных знака.
Например, откройте окно Immediate Window (Ctrl+G) и введите: ? Round(CCur(.545),2), Round(CDbl(.545),2) Денежный тип (первый) возвращает 0,54, тогда как Двойной точности — 0,55. Денежный округляет корректно (к четной цифре 4); тип с плавающей запятой (Двойной точности) некорректно. Подобным образом, если вы попробуете 8,995, Денежный корректно округлит вверх (к четной цифре 0), в то время как тип Двойной точности округлит вниз (неверно.)
Денежный тип справляется только с 4 десятичными знаками. Используйте масштабируемый тип Действительный (Decimal), если вам нужно больше знаков после запятой.
Варианты округления 0,5 к ближайшему целому
Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю. Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» — в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:
- Математическое округление — округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
- Банковское округление (англ. banker’s rounding) — округление для этого случая происходит к ближайшему чётному, то есть 2,5 → 2; 3,5 → 4.
- Случайное округление — округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
- Чередующееся округление — округление происходит в меньшую или большую сторону поочерёдно.
Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.
Математическое округление просто формально соответствует общему правилу округления (см. выше). Его недостатком является то, что при округлении большого числа значений, которые далее будут обрабатываться совместно, может происходить накопление ошибки округления. Типичный пример: округление до целых рублей денежных сумм, выражаемых в рублях и копейках. В реестре из 10 000 строк (если считать копеечную часть каждой суммы случайным числом с равномерным распределением, что обычно вполне допустимо) окажется в среднем около 100 строк с суммами, содержащими в части копеек значение 50. При округлении всех таких строк по правилам математического округления «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.
Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений. Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина из них окажется слева, а половина — справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.
Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина — в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.
- Округление в случайную сторону требует для каждой округляемой строки генерировать случайное число. При использовании псевдослучайных чисел, создаваемых линейным реккурентным методом, для генерации каждого числа требуется операция умножения, сложения и деления по модулю, что для больших объёмов данных может существенно замедлить расчёты.
- Чередующееся округление требует хранить флаг, показывающий, в какую сторону последний раз округлялось специальное значение, и при каждой операции переключать значение этого флага.
1 Округление вещественных чисел
Как мы уже разбирали, при присваивании переменной типа вещественного числа оно всегда округляется вниз до целого — его дробная часть просто отбрасывается.
А ведь легко можно представить ситуацию, когда дробное число нужно округлить просто до ближайшего целого или вообще вверх. Что делать в этой ситуации?
Для этого и для многих похожих случаев в Java есть класс , у которого есть методы , , .
Метод
Метод округляет число до ближайшего целого:
Но, как говорится, есть нюанс: результат работы этого метода — целочисленный тип (не ). Вещественные числа ведь могут быть очень большими, поэтому разработчики Java решили использовать самый большой целочисленный тип, который есть в Java — .
Поэтому чтобы присвоить результат в переменную типа , программист должен явно указать компилятору, что он согласен с возможной потерей данных (вдруг число не поместится в тип ).
Примеры:
Команда | Результат |
---|---|
Метод
Метод округляет число до целого вверх, примеры:
Команда | Результат |
---|---|
Метод
Метод округляет число до целого вниз, примеры:
Команда | Результат |
---|---|
Хотя, для округления числа до целого вниз, будет проще использовать просто оператор приведения типа — :
Команда | Результат |
---|---|
Если вам сложно запомнить эти команды, вам поможет небольшой урок английского:
- — математика
- — круг/округлять
- — потолок
- — пол
Обозначения
Операция округления числа x к большему (вверх) обозначается следующим образом: ⌈x⌉{\displaystyle \lceil x\rceil }. Аналогично, округление к меньшему (вниз) обозначается ⌊x⌋{\displaystyle \lfloor x\rfloor }. Эти символы (а также английские названия для этих операций — соответственно, ceiling и floor, досл. «потолок» и «пол») были введеныК. Айверсоном в его работе A Programming Language, описавшей систему математических обозначений, позже развившуюся в язык программирования APL. Айверсоновские обозначения операций округления были популяризированы Д. Кнутом в его книге «Искусство программирования».
По аналогии, округление к ближайшему целому часто обозначают как x{\displaystyle \left}. В некоторых прежних и современных (вплоть до конца XX века) работах так обозначалось округление к меньшему; такое использование этого обозначения восходит ещё к работе Гаусса 1808 года (третье его доказательство квадратичного закона взаимности). Кроме того, это же обозначение используется (с другим значением) в нотации Айверсона.
В стандарте Юникод зафиксированы следующие символы:
Названиев Юникоде | Код в Юникоде | Вид | Мнемоникав HTML 4 | Примечания | |
---|---|---|---|---|---|
16-ричный | десятичный | ||||
LEFT CEILING (тж. APL upstile) | 2308 | 8968 | ⌈ | ⌈ | не путать с:
|
RIGHT CEILING | 2309 | 8969 | ⌉ | ⌉ | не путать с:
|
LEFT FLOOR (тж. APL downstile) | 230A | 8970 | ⌊ | ⌊ | не путать с: |
RIGHT FLOOR | 230B | 8971 | ⌋ | ⌋ | не путать с:
|
Как проверить, активирована ли Windows 10?
Использование округлений при работе с числами ограниченной точности
Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.
Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле M=(mg)⋅h{\displaystyle M=(mg)\cdot h}, в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м. Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7•10−4, второго — 1/140 ≈ 7,1•10−3, относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3•10−3, что соответствует максимальной абсолютной погрешности результата ±0,059 кгс•м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс•м, таким образом, в рассчитанном значении 8,141 кгс•м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс•м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс•м.
Округление при работе с числами ограниченной точности
Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах погрешности измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.
Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,40 м с точностью до сантиметра, то момент силы в кгс по формуле M=(mg)⋅h{\displaystyle M=(mg)\cdot h}, в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м. Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7•10−4, второго — 1/140 ≈ 7,1•10−3, относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3•10−3, что соответствует максимальной абсолютной погрешности результата ±0,059 кгс•м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс•м, таким образом, в рассчитанном значении 8,141 кгс•м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс•м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс•м.
Округление рассчитанного значения погрешности
Обычно в окончательном значении рассчитанной погрешности оставляют только первые одну-две значащие цифры. По одному из применяемых правил, если значение погрешности начинается с цифр 1 или 2(по другому правилу — 1, 2 или 3), то в нём сохраняют две значащих цифры, в остальных случаях — одну, например: 0,13; 0,26; 0,3; 0,8. То есть каждая декада возможных значений округляемой погрешности разделена на две части. Недостаток этого правила состоит в том, что относительная погрешность округления изменяется значительным скачком при переходе от числа 0,29 к числу 0,3. Для устранения этого предлагается каждую декаду возможных значений погрешности делить на три части с менее резким изменением шага округления. Тогда ряд разрешённых к употреблению округлённых значений погрешности получает вид:
- 0,10; 0,12; 0,14; 0,16; 0,18;
- 0,20; 0,25; 0,30; 0,35; 0,40; 0,45;
- 0,5; 0,6; 0,7; 0,8; 0,9; 1,0.
Однако при использовании такого правила последние цифры самого результата, оставляемые после округления, также должны соответствовать приведённому ряду.
Пересчёт значений физических величин
Пересчёт значения физической величины из одной системы единиц в другую должен производиться с сохранением точности исходного значения. Для этого исходное значение в одних единицах следует умножить (разделить) на переводной коэффициент, часто содержащий большое количество значащих цифр, и округлить полученный результат до количества значащих цифр, обеспечивающего точность исходного значения. Например, при пересчёте значения силы 96,3 тс в значение, выраженное в килоньютонах (кН), следует умножить исходное значение на переводной коэффициент 9,80665 (1 тс = 9,80665 кН). В результате получается значение 944,380395 кН, которое необходимо округлить до трёх значащих цифр. Вместо 96,3 тс получаем 944 кН.
Округление
Одна из часто используемых операций при работе с числами – это округление.
В JavaScript есть несколько встроенных функций для работы с округлением:
- Округление в меньшую сторону: становится , а — .
- Округление в большую сторону: становится , а — .
- Округление до ближайшего целого: становится , — , а — .
- (не поддерживается в Internet Explorer)
- Производит удаление дробной части без округления: становится , а — .
Ниже представлена таблица с различиями между функциями округления:
Эти функции охватывают все возможные способы обработки десятичной части. Что если нам надо округлить число до количества цифр в дробной части?
Например, у нас есть и мы хотим округлить число до 2-х знаков после запятой, оставить только .
Есть два пути решения:
Умножить и разделить.
Например, чтобы округлить число до второго знака после запятой, мы можем умножить число на , вызвать функцию округления и разделить обратно.
Метод toFixed(n) округляет число до знаков после запятой и возвращает строковое представление результата.
Округляет значение до ближайшего числа, как в большую, так и в меньшую сторону, аналогично методу :
Обратите внимание, что результатом является строка. Если десятичная часть короче, чем необходима, будут добавлены нули в конец строки:
Мы можем преобразовать полученное значение в число, используя унарный оператор или , пример с унарным оператором: .
RemarksRemarks
Функция ROUND всегда возвращает значение.ROUND always returns a value. Если аргумент length имеет отрицательное значение и больше числа знаков перед десятичной запятой, ROUND возвращает 0.If length is negative and larger than the number of digits before the decimal point, ROUND returns 0.
ПримерExample | РезультатResult |
---|---|
ROUND(748,58, -4)ROUND(748.58, -4) |
Функция ROUND возвращает округленное значение выражения numeric_expression независимо от типа данных, когда length является отрицательным числом.ROUND returns a rounded numeric_expression, regardless of data type, when length is a negative number.
ПримерыExamples | РезультатResult |
---|---|
ROUND(748,58, -1)ROUND(748.58, -1) | 750,00750.00 |
ROUND(748,58, -2)ROUND(748.58, -2) | 700,00700.00 |
ROUND(748.58, -3)ROUND(748.58, -3) | В результате возникает арифметическое переполнение, так как для значения 748,58 по умолчанию используется тип decimal (5,2), который не позволяет вернуть значение 1000.Results in an arithmetic overflow, because 748.58 defaults to decimal(5,2), which cannot return 1000.00. |
Чтобы округлить результат до четырех цифр, измените тип данных на входе.To round up to 4 digits, change the data type of the input. Пример:For example: | 1000.001000.00 |
Неточные вычисления
Внутри JavaScript число представлено в виде 64-битного формата IEEE-754. Для хранения числа используется 64 бита: 52 из них используется для хранения цифр, 11 из них для хранения положения десятичной точки (если число целое, то хранится 0), и один бит отведён на хранение знака.
Если число слишком большое, оно переполнит 64-битное хранилище, JavaScript вернёт бесконечность:
Наиболее часто встречающаяся ошибка при работе с числами в JavaScript – это потеря точности.
Посмотрите на это (неверное!) сравнение:
Да-да, сумма и не равна .
Странно! Что тогда, если не ?
Но почему это происходит?
Число хранится в памяти в бинарной форме, как последовательность бит – единиц и нулей. Но дроби, такие как , , которые выглядят довольно просто в десятичной системе счисления, на самом деле являются бесконечной дробью в двоичной форме.
Другими словами, что такое ? Это единица делённая на десять — , одна десятая. В десятичной системе счисления такие числа легко представимы, по сравнению с одной третьей: , которая становится бесконечной дробью .
Деление на гарантированно хорошо работает в десятичной системе, но деление на – нет. По той же причине и в двоичной системе счисления, деление на обязательно сработает, а становится бесконечной дробью.
В JavaScript нет возможности для хранения точных значений 0.1 или 0.2, используя двоичную систему, точно также, как нет возможности хранить одну третью в десятичной системе счисления.
Числовой формат IEEE-754 решает эту проблему путём округления до ближайшего возможного числа. Правила округления обычно не позволяют нам увидеть эту «крошечную потерю точности», но она существует.
Пример:
И когда мы суммируем 2 числа, их «неточности» тоже суммируются.
Вот почему – это не совсем .
Не только в JavaScript
Справедливости ради заметим, что ошибка в точности вычислений для чисел с плавающей точкой сохраняется в любом другом языке, где используется формат IEEE 754, включая PHP, Java, C, Perl, Ruby.
Можно ли обойти проблему? Конечно, наиболее надёжный способ — это округлить результат используя метод toFixed(n):
Также можно временно умножить число на 100 (или на большее), чтобы привести его к целому, выполнить математические действия, а после разделить обратно. Суммируя целые числа, мы уменьшаем погрешность, но она все равно появляется при финальном делении:
Таким образом, метод умножения/деления уменьшает погрешность, но полностью её не решает.
Забавный пример
Попробуйте выполнить его:
Причина та же – потеря точности. Из 64 бит, отведённых на число, сами цифры числа занимают до 52 бит, остальные 11 бит хранят позицию десятичной точки и один бит – знак. Так что если 52 бит не хватает на цифры, то при записи пропадут младшие разряды.
Интерпретатор не выдаст ошибку, но в результате получится «не совсем то число», что мы и видим в примере выше. Как говорится: «как смог, так записал».
Два нуля
Другим забавным следствием внутреннего представления чисел является наличие двух нулей: и .
Все потому, что знак представлен отдельным битом, так что, любое число может быть положительным и отрицательным, включая нуль.
В большинстве случаев это поведение незаметно, так как операторы в JavaScript воспринимают их одинаковыми.
Комментарии
Поведение этого метода соответствует стандарту IEEE 754, разделу 4.The behavior of this method follows IEEE Standard 754, section 4. Этот тип округления иногда называют округлением в сторону отрицательной бесконечности.This kind of rounding is sometimes called rounding toward negative infinity.
Floor(Double)
Возвращает наибольшее целое число, которое меньше или равно заданному числу с плавающей запятой двойной точности.Returns the largest integral value less than or equal to the specified double-precision floating-point number.
-
d
- Double
Число двойной точности с плавающей запятой.A double-precision floating-point number.
Возвращаемое значение
- Double
Наибольшее целое число, которое меньше или равно .The largest integral value less than or equal to . Если значение параметра равно NaN, NegativeInfinity или PositiveInfinity, возвращается это значение.If is equal to NaN, NegativeInfinity, or PositiveInfinity, that value is returned.
Примеры
В следующем примере показан метод и его отличие от метода.The following example illustrates the method and contrasts it with the method.
Комментарии
Поведение этого метода соответствует стандарту IEEE 754, разделу 4.The behavior of this method follows IEEE Standard 754, section 4. Этот тип округления иногда называют округлением в сторону отрицательной бесконечности.This kind of rounding is sometimes called rounding toward negative infinity. Иными словами, если является положительным, любой дробный компонент усекается.In other words, if is positive, any fractional component is truncated. Если имеет отрицательное значение, присутствие любого компонента дробной части приводит к округлению его до меньшего целого числа.If is negative, the presence of any fractional component causes it to be rounded to the smaller integer. Операция этого метода отличается от Ceiling метода, который поддерживает округление в сторону положительной бесконечности.The operation of this method differs from the Ceiling method, which supports rounding toward positive infinity.
Начиная с Visual Basic 15,8, производительность преобразования типа «двойное в целое число» оптимизирована, если передать значение, возвращаемое методом, в любую функцию целочисленного преобразованияили если значение Double, возвращаемое, автоматически преобразуется в целое число с параметром Option-on , равным OFF.Starting with Visual Basic 15.8, the performance of Double-to-integer conversion is optimized if you pass the value returned by the method to the any of the integral conversion functions, or if the Double value returned by is automatically converted to an integer with Option Strict set to Off. Эта оптимизация позволяет коду выполняться быстрее — до двух раз быстрее для кода, который выполняет большое количество преобразований в целочисленные типы.This optimization allows code to run faster — up to twice as fast for code that does a large number of conversions to integer types. В следующем примере показаны оптимизированные преобразования:The following example illustrates such optimized conversions:
3 Потеря точности при работе с вещественными числами
При работе с вещественными числами всегда нужно иметь в виду, что вещественные числа не точные. Всегда будут ошибки округления, ошибки преобразования из десятичной системы в двоичную и, наконец, самое частое – потеря точности при сложении/вычитании чисел слишком разных размерностей.
Последнее — самая неожиданная ситуация для новичков в программировании.
Если из числа вычесть , мы получим опять .
Вычитание чисел слишком разных размерностей | Объяснение |
---|---|
Второе число слишком маленькое, и его значащая часть игнорируется (выделено серым). Оранжевым выделены 15 значащих цифр. |
Что тут сказать, программирование — это не математика.
ПримерыExamples
A.A. Использование функции ROUND и приближенийUsing ROUND and estimates
Следующий пример показывает два выражения, которые демонстрируют, используя , что последний знак всегда является приближением.The following example shows two expressions that demonstrate by using the last digit is always an estimate.
Результирующий набор:Here is the result set.
В следующем примере показаны округление и аппроксимация.The following example shows rounding and approximations.
Результирующий набор:Here is the result set.
В.C. Использование функции ROUND для усеченияUsing ROUND to truncate
В следующем примере используются две инструкции для демонстрации различия между округлением и усечением.The following example uses two statements to demonstrate the difference between rounding and truncation. Первая инструкция округляет результат.The first statement rounds the result. Вторая инструкция усекает результат.The second statement truncates the result.
Результирующий набор:Here is the result set.
Примечания
- ↑
- Кнут Д. Э. Искусство программирования. Том 1. Основные алгоритмы = The Art of Computer Programming. Volume 1. Fundamental Algorithms / под ред. С. Г. Тригуб (гл. 1), Ю. Г. Гордиенко (гл. 2) и И. В. Красикова (разд. 2.5 и 2.6). — 3. — Москва: Вильямс, 2002. — Т. 1. — 720 с. — ISBN 5-8459-0080-8.
- A’HEARN, B., J. BATEN AND D. CRAYEN (2009). “Quantifying Quantitative Literacy: Age Heaping and the History of Human Capital”, Journal of Economic History 69,783-808.
- В. М. Заварыкин, В. Г. Житомирский, М. П. Лапчик. Техника вычислений и алгоритмизация: Вводный курс: Учебное пособие для студентов педагогических институтов по физико-математическим специальностям. — М: Просвещение, 1987. 160 с.: ил.
- цит. по В. Гильде, З. Альтрихтер. «С микрокалькулятором в руках». Издание второе. Перевод с немецкого Ю. А. Данилова. М:Мир, 1987, стр. 64.
АргументыArguments
numeric_expressionnumeric_expressionВыражение категории точного числового или приблизительного числового типа данных, за исключением типа данных bit.Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.
lengthlengthТочность, с которой должно быть округлено значение numeric_expression.Is the precision to which numeric_expression is to be rounded. Аргумент length должен быть выражением типа tinyint, smallint или int. Если аргумент length является положительным числом, значение numeric_expression округляется до числа десятичных разрядов, указанных в аргументе length.length must be an expression of type tinyint, smallint, or int. When length is a positive number, numeric_expression is rounded to the number of decimal positions specified by length. Если аргумент length является отрицательным числом, значение numeric_expression округляется слева от десятичной запятой, как указано в аргументе length.When length is a negative number, numeric_expression is rounded on the left side of the decimal point, as specified by length.
functionfunctionТип выполняемой операции.Is the type of operation to perform. Аргумент function должен иметь тип tinyint, smallint или int. Если аргумент function не указан или имеет значение 0 (по умолчанию), значение numeric_expression округляется.function must be tinyint, smallint, or int. When function is omitted or has a value of 0 (default), numeric_expression is rounded. Когда указывается значение, не равное 0, значение numeric_expression усекается.When a value other than 0 is specified, numeric_expression is truncated.
Итого
Чтобы писать числа с большим количеством нулей:
- Используйте краткую форму записи чисел – , с указанным количеством нулей. Например: это с 6-ю нулями .
- Отрицательное число после приводит к делению числа на 1 с указанным количеством нулей. Например: это ( миллионных).
Для других систем счисления:
- Можно записывать числа сразу в шестнадцатеричной (), восьмеричной () и бинарной () системах счисления
- преобразует строку в целое число в соответствии с указанной системой счисления: .
- представляет число в строковом виде в указанной системе счисления .
Для преобразования значений типа и в число:
Используйте parseInt/parseFloat для «мягкого» преобразования строки в число, данные функции по порядку считывают число из строки до тех пор пока не возникнет ошибка.
Для дробей:
- Используйте округления , , , или .
- Помните, что при работе с дробями происходит потеря точности.
Ещё больше математических функций:
Документация по объекту Math
Библиотека маленькая, но содержит всё самое важное